Aromātai
-10
Tauwehe
-10
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( - 15 \frac { 16 } { 25 } : 4.6 + 7.1 ) : ( - 0.37 ) =
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{-\frac{375+16}{25}}{4.6}+7.1}{-0.37}
Whakareatia te 15 ki te 25, ka 375.
\frac{\frac{-\frac{391}{25}}{4.6}+7.1}{-0.37}
Tāpirihia te 375 ki te 16, ka 391.
\frac{\frac{-391}{25\times 4.6}+7.1}{-0.37}
Tuhia te \frac{-\frac{391}{25}}{4.6} hei hautanga kotahi.
\frac{\frac{-391}{115}+7.1}{-0.37}
Whakareatia te 25 ki te 4.6, ka 115.
\frac{-\frac{17}{5}+7.1}{-0.37}
Whakahekea te hautanga \frac{-391}{115} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 23.
\frac{-\frac{17}{5}+\frac{71}{10}}{-0.37}
Me tahuri ki tau ā-ira 7.1 ki te hautau \frac{71}{10}.
\frac{-\frac{34}{10}+\frac{71}{10}}{-0.37}
Ko te maha noa iti rawa atu o 5 me 10 ko 10. Me tahuri -\frac{17}{5} me \frac{71}{10} ki te hautau me te tautūnga 10.
\frac{\frac{-34+71}{10}}{-0.37}
Tā te mea he rite te tauraro o -\frac{34}{10} me \frac{71}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{37}{10}}{-0.37}
Tāpirihia te -34 ki te 71, ka 37.
\frac{37}{10\left(-0.37\right)}
Tuhia te \frac{\frac{37}{10}}{-0.37} hei hautanga kotahi.
\frac{37}{-3.7}
Whakareatia te 10 ki te -0.37, ka -3.7.
\frac{370}{-37}
Whakarohaina te \frac{37}{-3.7} mā te whakarea i te taurunga me te tauraro ki te 10.
-10
Whakawehea te 370 ki te -37, kia riro ko -10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}