Aromātai
144-i
Wāhi Tūturu
144
Tohaina
Kua tāruatia ki te papatopenga
-14-i-\left(-6\right)-5\left(-6\right)\times 5+2
Whakareatia te -2 ki te 3, ka -6.
-14-i+6-5\left(-6\right)\times 5+2
Ko te tauaro o -6 ko 6.
-14+6-i-5\left(-6\right)\times 5+2
Whakakotahitia ngā tau tūturu me ngā tau pōhewa i roto o -14-i me te 6.
-8-i-5\left(-6\right)\times 5+2
Tāpiri -14 ki te 6.
-5\left(-6\right)\times 5-8+2-i
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa.
-5\left(-6\right)\times 5-6-i
Tāpiri -8 ki te 2.
30\times 5-6-i
Whakareatia te -5 ki te -6, ka 30.
150-6-i
Whakareatia te 30 ki te 5, ka 150.
144-i
Tāpiri 150 ki te -6.
Re(-14-i-\left(-6\right)-5\left(-6\right)\times 5+2)
Whakareatia te -2 ki te 3, ka -6.
Re(-14-i+6-5\left(-6\right)\times 5+2)
Ko te tauaro o -6 ko 6.
Re(-14+6-i-5\left(-6\right)\times 5+2)
Whakakotahitia ngā tau tūturu me ngā tau pōhewa i roto o -14-i me te 6.
Re(-8-i-5\left(-6\right)\times 5+2)
Tāpiri -14 ki te 6.
Re(-5\left(-6\right)\times 5-8+2-i)
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -8-i+2.
Re(-5\left(-6\right)\times 5-6-i)
Tāpiri -8 ki te 2.
Re(30\times 5-6-i)
Whakareatia te -5 ki te -6, ka 30.
Re(150-6-i)
Whakareatia te 30 ki te 5, ka 150.
Re(144-i)
Tāpiri 150 ki te -6.
144
Ko te wāhi tūturu o 144-i ko 144.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}