Whakaoti mō k
k=-20
k=-4
Tohaina
Kua tāruatia ki te papatopenga
144+24k+k^{2}-4\times 4\times 4=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-12-k\right)^{2}.
144+24k+k^{2}-16\times 4=0
Whakareatia te 4 ki te 4, ka 16.
144+24k+k^{2}-64=0
Whakareatia te 16 ki te 4, ka 64.
80+24k+k^{2}=0
Tangohia te 64 i te 144, ka 80.
k^{2}+24k+80=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=24 ab=80
Hei whakaoti i te whārite, whakatauwehea te k^{2}+24k+80 mā te whakamahi i te tātai k^{2}+\left(a+b\right)k+ab=\left(k+a\right)\left(k+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,80 2,40 4,20 5,16 8,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 80.
1+80=81 2+40=42 4+20=24 5+16=21 8+10=18
Tātaihia te tapeke mō ia takirua.
a=4 b=20
Ko te otinga te takirua ka hoatu i te tapeke 24.
\left(k+4\right)\left(k+20\right)
Me tuhi anō te kīanga whakatauwehe \left(k+a\right)\left(k+b\right) mā ngā uara i tātaihia.
k=-4 k=-20
Hei kimi otinga whārite, me whakaoti te k+4=0 me te k+20=0.
144+24k+k^{2}-4\times 4\times 4=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-12-k\right)^{2}.
144+24k+k^{2}-16\times 4=0
Whakareatia te 4 ki te 4, ka 16.
144+24k+k^{2}-64=0
Whakareatia te 16 ki te 4, ka 64.
80+24k+k^{2}=0
Tangohia te 64 i te 144, ka 80.
k^{2}+24k+80=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=24 ab=1\times 80=80
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei k^{2}+ak+bk+80. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,80 2,40 4,20 5,16 8,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 80.
1+80=81 2+40=42 4+20=24 5+16=21 8+10=18
Tātaihia te tapeke mō ia takirua.
a=4 b=20
Ko te otinga te takirua ka hoatu i te tapeke 24.
\left(k^{2}+4k\right)+\left(20k+80\right)
Tuhia anō te k^{2}+24k+80 hei \left(k^{2}+4k\right)+\left(20k+80\right).
k\left(k+4\right)+20\left(k+4\right)
Tauwehea te k i te tuatahi me te 20 i te rōpū tuarua.
\left(k+4\right)\left(k+20\right)
Whakatauwehea atu te kīanga pātahi k+4 mā te whakamahi i te āhuatanga tātai tohatoha.
k=-4 k=-20
Hei kimi otinga whārite, me whakaoti te k+4=0 me te k+20=0.
144+24k+k^{2}-4\times 4\times 4=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-12-k\right)^{2}.
144+24k+k^{2}-16\times 4=0
Whakareatia te 4 ki te 4, ka 16.
144+24k+k^{2}-64=0
Whakareatia te 16 ki te 4, ka 64.
80+24k+k^{2}=0
Tangohia te 64 i te 144, ka 80.
k^{2}+24k+80=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-24±\sqrt{24^{2}-4\times 80}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 24 mō b, me 80 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-24±\sqrt{576-4\times 80}}{2}
Pūrua 24.
k=\frac{-24±\sqrt{576-320}}{2}
Whakareatia -4 ki te 80.
k=\frac{-24±\sqrt{256}}{2}
Tāpiri 576 ki te -320.
k=\frac{-24±16}{2}
Tuhia te pūtakerua o te 256.
k=-\frac{8}{2}
Nā, me whakaoti te whārite k=\frac{-24±16}{2} ina he tāpiri te ±. Tāpiri -24 ki te 16.
k=-4
Whakawehe -8 ki te 2.
k=-\frac{40}{2}
Nā, me whakaoti te whārite k=\frac{-24±16}{2} ina he tango te ±. Tango 16 mai i -24.
k=-20
Whakawehe -40 ki te 2.
k=-4 k=-20
Kua oti te whārite te whakatau.
144+24k+k^{2}-4\times 4\times 4=0
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(-12-k\right)^{2}.
144+24k+k^{2}-16\times 4=0
Whakareatia te 4 ki te 4, ka 16.
144+24k+k^{2}-64=0
Whakareatia te 16 ki te 4, ka 64.
80+24k+k^{2}=0
Tangohia te 64 i te 144, ka 80.
24k+k^{2}=-80
Tangohia te 80 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
k^{2}+24k=-80
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
k^{2}+24k+12^{2}=-80+12^{2}
Whakawehea te 24, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 12. Nā, tāpiria te pūrua o te 12 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
k^{2}+24k+144=-80+144
Pūrua 12.
k^{2}+24k+144=64
Tāpiri -80 ki te 144.
\left(k+12\right)^{2}=64
Tauwehea k^{2}+24k+144. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+12\right)^{2}}=\sqrt{64}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
k+12=8 k+12=-8
Whakarūnātia.
k=-4 k=-20
Me tango 12 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}