Aromātai
-\frac{16}{21}\approx -0.761904762
Tauwehe
-\frac{16}{21} = -0.7619047619047619
Tohaina
Kua tāruatia ki te papatopenga
\frac{-\frac{36+2}{3}}{14}-\frac{-\frac{8\times 3+1}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Whakareatia te 12 ki te 3, ka 36.
\frac{-\frac{38}{3}}{14}-\frac{-\frac{8\times 3+1}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Tāpirihia te 36 ki te 2, ka 38.
\frac{-38}{3\times 14}-\frac{-\frac{8\times 3+1}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Tuhia te \frac{-\frac{38}{3}}{14} hei hautanga kotahi.
\frac{-38}{42}-\frac{-\frac{8\times 3+1}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Whakareatia te 3 ki te 14, ka 42.
-\frac{19}{21}-\frac{-\frac{8\times 3+1}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Whakahekea te hautanga \frac{-38}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{19}{21}-\frac{-\frac{24+1}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Whakareatia te 8 ki te 3, ka 24.
-\frac{19}{21}-\frac{-\frac{25}{3}}{-14}+\frac{\frac{10\times 3+1}{3}}{14}
Tāpirihia te 24 ki te 1, ka 25.
-\frac{19}{21}-\frac{-25}{3\left(-14\right)}+\frac{\frac{10\times 3+1}{3}}{14}
Tuhia te \frac{-\frac{25}{3}}{-14} hei hautanga kotahi.
-\frac{19}{21}-\frac{-25}{-42}+\frac{\frac{10\times 3+1}{3}}{14}
Whakareatia te 3 ki te -14, ka -42.
-\frac{19}{21}-\frac{25}{42}+\frac{\frac{10\times 3+1}{3}}{14}
Ka taea te hautanga \frac{-25}{-42} te whakamāmā ki te \frac{25}{42} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
-\frac{38}{42}-\frac{25}{42}+\frac{\frac{10\times 3+1}{3}}{14}
Ko te maha noa iti rawa atu o 21 me 42 ko 42. Me tahuri -\frac{19}{21} me \frac{25}{42} ki te hautau me te tautūnga 42.
\frac{-38-25}{42}+\frac{\frac{10\times 3+1}{3}}{14}
Tā te mea he rite te tauraro o -\frac{38}{42} me \frac{25}{42}, me tango rāua mā te tango i ō raua taurunga.
\frac{-63}{42}+\frac{\frac{10\times 3+1}{3}}{14}
Tangohia te 25 i te -38, ka -63.
-\frac{3}{2}+\frac{\frac{10\times 3+1}{3}}{14}
Whakahekea te hautanga \frac{-63}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 21.
-\frac{3}{2}+\frac{10\times 3+1}{3\times 14}
Tuhia te \frac{\frac{10\times 3+1}{3}}{14} hei hautanga kotahi.
-\frac{3}{2}+\frac{30+1}{3\times 14}
Whakareatia te 10 ki te 3, ka 30.
-\frac{3}{2}+\frac{31}{3\times 14}
Tāpirihia te 30 ki te 1, ka 31.
-\frac{3}{2}+\frac{31}{42}
Whakareatia te 3 ki te 14, ka 42.
-\frac{63}{42}+\frac{31}{42}
Ko te maha noa iti rawa atu o 2 me 42 ko 42. Me tahuri -\frac{3}{2} me \frac{31}{42} ki te hautau me te tautūnga 42.
\frac{-63+31}{42}
Tā te mea he rite te tauraro o -\frac{63}{42} me \frac{31}{42}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-32}{42}
Tāpirihia te -63 ki te 31, ka -32.
-\frac{16}{21}
Whakahekea te hautanga \frac{-32}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}