Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-12x^{2}+x+9x+7
Pahekotia te -10x^{2} me -2x^{2}, ka -12x^{2}.
-12x^{2}+10x+7
Pahekotia te x me 9x, ka 10x.
factor(-12x^{2}+x+9x+7)
Pahekotia te -10x^{2} me -2x^{2}, ka -12x^{2}.
factor(-12x^{2}+10x+7)
Pahekotia te x me 9x, ka 10x.
-12x^{2}+10x+7=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\left(-12\right)\times 7}}{2\left(-12\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{100-4\left(-12\right)\times 7}}{2\left(-12\right)}
Pūrua 10.
x=\frac{-10±\sqrt{100+48\times 7}}{2\left(-12\right)}
Whakareatia -4 ki te -12.
x=\frac{-10±\sqrt{100+336}}{2\left(-12\right)}
Whakareatia 48 ki te 7.
x=\frac{-10±\sqrt{436}}{2\left(-12\right)}
Tāpiri 100 ki te 336.
x=\frac{-10±2\sqrt{109}}{2\left(-12\right)}
Tuhia te pūtakerua o te 436.
x=\frac{-10±2\sqrt{109}}{-24}
Whakareatia 2 ki te -12.
x=\frac{2\sqrt{109}-10}{-24}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{109}}{-24} ina he tāpiri te ±. Tāpiri -10 ki te 2\sqrt{109}.
x=\frac{5-\sqrt{109}}{12}
Whakawehe -10+2\sqrt{109} ki te -24.
x=\frac{-2\sqrt{109}-10}{-24}
Nā, me whakaoti te whārite x=\frac{-10±2\sqrt{109}}{-24} ina he tango te ±. Tango 2\sqrt{109} mai i -10.
x=\frac{\sqrt{109}+5}{12}
Whakawehe -10-2\sqrt{109} ki te -24.
-12x^{2}+10x+7=-12\left(x-\frac{5-\sqrt{109}}{12}\right)\left(x-\frac{\sqrt{109}+5}{12}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5-\sqrt{109}}{12} mō te x_{1} me te \frac{5+\sqrt{109}}{12} mō te x_{2}.