Aromātai
-\left(3x+2\right)\left(1-x\right)^{2}
Tauwehe
-\left(3x+2\right)\left(1-x\right)^{2}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
( - 1 - 3 x + 4 x ^ { 2 } ) + ( 4 x - 3 x ^ { 3 } - 1 )
Tohaina
Kua tāruatia ki te papatopenga
-1+x+4x^{2}-3x^{3}-1
Pahekotia te -3x me 4x, ka x.
-2+x+4x^{2}-3x^{3}
Tangohia te 1 i te -1, ka -2.
-3x^{3}+4x^{2}+x-2
Whakarea ka paheko i ngā kīanga tau ōrite.
\left(3x+2\right)\left(-x^{2}+2x-1\right)
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau -2, ā, ka wehea e q te whakarea arahanga -3. Ko tetahi pūtake pērā ko -\frac{2}{3}. Tauwehea te pūrau mā te whakawehe mā te 3x+2.
a+b=2 ab=-\left(-1\right)=1
Whakaarohia te -x^{2}+2x-1. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+x\right)+\left(x-1\right)
Tuhia anō te -x^{2}+2x-1 hei \left(-x^{2}+x\right)+\left(x-1\right).
-x\left(x-1\right)+x-1
Whakatauwehea atu -x i te -x^{2}+x.
\left(x-1\right)\left(-x+1\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(x-1\right)\left(-x+1\right)\left(3x+2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}