Aromātai
\frac{5}{3}\approx 1.666666667
Tauwehe
\frac{5}{3} = 1\frac{2}{3} = 1.6666666666666667
Tohaina
Kua tāruatia ki te papatopenga
\left(-\frac{4+3}{4}+\frac{7}{8}-\frac{7}{12}\right)\left(-\frac{1\times 7+1}{7}\right)
Whakareatia te 1 ki te 4, ka 4.
\left(-\frac{7}{4}+\frac{7}{8}-\frac{7}{12}\right)\left(-\frac{1\times 7+1}{7}\right)
Tāpirihia te 4 ki te 3, ka 7.
\left(-\frac{14}{8}+\frac{7}{8}-\frac{7}{12}\right)\left(-\frac{1\times 7+1}{7}\right)
Ko te maha noa iti rawa atu o 4 me 8 ko 8. Me tahuri -\frac{7}{4} me \frac{7}{8} ki te hautau me te tautūnga 8.
\left(\frac{-14+7}{8}-\frac{7}{12}\right)\left(-\frac{1\times 7+1}{7}\right)
Tā te mea he rite te tauraro o -\frac{14}{8} me \frac{7}{8}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\left(-\frac{7}{8}-\frac{7}{12}\right)\left(-\frac{1\times 7+1}{7}\right)
Tāpirihia te -14 ki te 7, ka -7.
\left(-\frac{21}{24}-\frac{14}{24}\right)\left(-\frac{1\times 7+1}{7}\right)
Ko te maha noa iti rawa atu o 8 me 12 ko 24. Me tahuri -\frac{7}{8} me \frac{7}{12} ki te hautau me te tautūnga 24.
\frac{-21-14}{24}\left(-\frac{1\times 7+1}{7}\right)
Tā te mea he rite te tauraro o -\frac{21}{24} me \frac{14}{24}, me tango rāua mā te tango i ō raua taurunga.
-\frac{35}{24}\left(-\frac{7+1}{7}\right)
Tangohia te 14 i te -21, ka -35.
-\frac{35}{24}\left(-\frac{8}{7}\right)
Tāpirihia te 7 ki te 1, ka 8.
\frac{-35\left(-8\right)}{24\times 7}
Me whakarea te -\frac{35}{24} ki te -\frac{8}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{280}{168}
Mahia ngā whakarea i roto i te hautanga \frac{-35\left(-8\right)}{24\times 7}.
\frac{5}{3}
Whakahekea te hautanga \frac{280}{168} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 56.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}