Whakaoti mō y
y=176
y=446
Graph
Pātaitai
Quadratic Equation
( - 01 - 01 ) ^ { 2 } + \{ ( 200 - y ) - ( - 115 + 4 ) \} ^ { 2 } = 18225
Tohaina
Kua tāruatia ki te papatopenga
\left(0-0\times 1\right)^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Whakareatia te 0 ki te 1, ka 0.
\left(0-0\right)^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Whakareatia te 0 ki te 1, ka 0.
0^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
0+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
0+\left(200-y-\left(-111\right)\right)^{2}=18225
Tāpirihia te -115 ki te 4, ka -111.
0+\left(200-y+111\right)^{2}=18225
Ko te tauaro o -111 ko 111.
0+y^{2}-622y+96721=18225
Pūrua 200-y+111.
96721+y^{2}-622y=18225
Tāpirihia te 0 ki te 96721, ka 96721.
96721+y^{2}-622y-18225=0
Tangohia te 18225 mai i ngā taha e rua.
78496+y^{2}-622y=0
Tangohia te 18225 i te 96721, ka 78496.
y^{2}-622y+78496=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-622\right)±\sqrt{\left(-622\right)^{2}-4\times 78496}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -622 mō b, me 78496 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-622\right)±\sqrt{386884-4\times 78496}}{2}
Pūrua -622.
y=\frac{-\left(-622\right)±\sqrt{386884-313984}}{2}
Whakareatia -4 ki te 78496.
y=\frac{-\left(-622\right)±\sqrt{72900}}{2}
Tāpiri 386884 ki te -313984.
y=\frac{-\left(-622\right)±270}{2}
Tuhia te pūtakerua o te 72900.
y=\frac{622±270}{2}
Ko te tauaro o -622 ko 622.
y=\frac{892}{2}
Nā, me whakaoti te whārite y=\frac{622±270}{2} ina he tāpiri te ±. Tāpiri 622 ki te 270.
y=446
Whakawehe 892 ki te 2.
y=\frac{352}{2}
Nā, me whakaoti te whārite y=\frac{622±270}{2} ina he tango te ±. Tango 270 mai i 622.
y=176
Whakawehe 352 ki te 2.
y=446 y=176
Kua oti te whārite te whakatau.
\left(0-0\times 1\right)^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Whakareatia te 0 ki te 1, ka 0.
\left(0-0\right)^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Whakareatia te 0 ki te 1, ka 0.
0^{2}+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
0+\left(200-y-\left(-115+4\right)\right)^{2}=18225
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
0+\left(200-y-\left(-111\right)\right)^{2}=18225
Tāpirihia te -115 ki te 4, ka -111.
0+\left(200-y+111\right)^{2}=18225
Ko te tauaro o -111 ko 111.
0+y^{2}-622y+96721=18225
Pūrua 200-y+111.
96721+y^{2}-622y=18225
Tāpirihia te 0 ki te 96721, ka 96721.
y^{2}-622y=18225-96721
Tangohia te 96721 mai i ngā taha e rua.
y^{2}-622y=-78496
Tangohia te 96721 i te 18225, ka -78496.
y^{2}-622y+\left(-311\right)^{2}=-78496+\left(-311\right)^{2}
Whakawehea te -622, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -311. Nā, tāpiria te pūrua o te -311 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-622y+96721=-78496+96721
Pūrua -311.
y^{2}-622y+96721=18225
Tāpiri -78496 ki te 96721.
\left(y-311\right)^{2}=18225
Tauwehea y^{2}-622y+96721. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-311\right)^{2}}=\sqrt{18225}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-311=135 y-311=-135
Whakarūnātia.
y=446 y=176
Me tāpiri 311 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}