Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-\frac{\sqrt{5}}{\sqrt{3}}\right)^{2}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{3}}.
\left(-\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\left(-\frac{\sqrt{5}\sqrt{3}}{3}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
\left(-\frac{\sqrt{15}}{3}\right)^{2}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\left(\frac{\sqrt{15}}{3}\right)^{2}
Tātaihia te -\frac{\sqrt{15}}{3} mā te pū o 2, kia riro ko \left(\frac{\sqrt{15}}{3}\right)^{2}.
\frac{\left(\sqrt{15}\right)^{2}}{3^{2}}
Kia whakarewa i te \frac{\sqrt{15}}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{15}{3^{2}}
Ko te pūrua o \sqrt{15} ko 15.
\frac{15}{9}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{5}{3}
Whakahekea te hautanga \frac{15}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.