Aromātai
\frac{29}{24}\approx 1.208333333
Tauwehe
\frac{29}{2 ^ {3} \cdot 3} = 1\frac{5}{24} = 1.2083333333333333
Tohaina
Kua tāruatia ki te papatopenga
-\frac{9}{16}\left(-\frac{9+1}{3}\right)+\frac{\frac{8}{13}}{-\frac{12}{13}}
Whakareatia te 3 ki te 3, ka 9.
-\frac{9}{16}\left(-\frac{10}{3}\right)+\frac{\frac{8}{13}}{-\frac{12}{13}}
Tāpirihia te 9 ki te 1, ka 10.
\frac{-9\left(-10\right)}{16\times 3}+\frac{\frac{8}{13}}{-\frac{12}{13}}
Me whakarea te -\frac{9}{16} ki te -\frac{10}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{90}{48}+\frac{\frac{8}{13}}{-\frac{12}{13}}
Mahia ngā whakarea i roto i te hautanga \frac{-9\left(-10\right)}{16\times 3}.
\frac{15}{8}+\frac{\frac{8}{13}}{-\frac{12}{13}}
Whakahekea te hautanga \frac{90}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{15}{8}+\frac{8}{13}\left(-\frac{13}{12}\right)
Whakawehe \frac{8}{13} ki te -\frac{12}{13} mā te whakarea \frac{8}{13} ki te tau huripoki o -\frac{12}{13}.
\frac{15}{8}+\frac{8\left(-13\right)}{13\times 12}
Me whakarea te \frac{8}{13} ki te -\frac{13}{12} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{15}{8}+\frac{-104}{156}
Mahia ngā whakarea i roto i te hautanga \frac{8\left(-13\right)}{13\times 12}.
\frac{15}{8}-\frac{2}{3}
Whakahekea te hautanga \frac{-104}{156} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 52.
\frac{45}{24}-\frac{16}{24}
Ko te maha noa iti rawa atu o 8 me 3 ko 24. Me tahuri \frac{15}{8} me \frac{2}{3} ki te hautau me te tautūnga 24.
\frac{45-16}{24}
Tā te mea he rite te tauraro o \frac{45}{24} me \frac{16}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{29}{24}
Tangohia te 16 i te 45, ka 29.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}