Aromātai
-4
Tauwehe
-4
Tohaina
Kua tāruatia ki te papatopenga
-\frac{7}{2}-\frac{2}{2}-\left(\frac{11}{14}-\frac{3}{2}\right)-\frac{3}{14}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{-7-2}{2}-\left(\frac{11}{14}-\frac{3}{2}\right)-\frac{3}{14}
Tā te mea he rite te tauraro o -\frac{7}{2} me \frac{2}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{9}{2}-\left(\frac{11}{14}-\frac{3}{2}\right)-\frac{3}{14}
Tangohia te 2 i te -7, ka -9.
-\frac{9}{2}-\left(\frac{11}{14}-\frac{21}{14}\right)-\frac{3}{14}
Ko te maha noa iti rawa atu o 14 me 2 ko 14. Me tahuri \frac{11}{14} me \frac{3}{2} ki te hautau me te tautūnga 14.
-\frac{9}{2}-\frac{11-21}{14}-\frac{3}{14}
Tā te mea he rite te tauraro o \frac{11}{14} me \frac{21}{14}, me tango rāua mā te tango i ō raua taurunga.
-\frac{9}{2}-\frac{-10}{14}-\frac{3}{14}
Tangohia te 21 i te 11, ka -10.
-\frac{9}{2}-\left(-\frac{5}{7}\right)-\frac{3}{14}
Whakahekea te hautanga \frac{-10}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{9}{2}+\frac{5}{7}-\frac{3}{14}
Ko te tauaro o -\frac{5}{7} ko \frac{5}{7}.
-\frac{63}{14}+\frac{10}{14}-\frac{3}{14}
Ko te maha noa iti rawa atu o 2 me 7 ko 14. Me tahuri -\frac{9}{2} me \frac{5}{7} ki te hautau me te tautūnga 14.
\frac{-63+10}{14}-\frac{3}{14}
Tā te mea he rite te tauraro o -\frac{63}{14} me \frac{10}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{53}{14}-\frac{3}{14}
Tāpirihia te -63 ki te 10, ka -53.
\frac{-53-3}{14}
Tā te mea he rite te tauraro o -\frac{53}{14} me \frac{3}{14}, me tango rāua mā te tango i ō raua taurunga.
\frac{-56}{14}
Tangohia te 3 i te -53, ka -56.
-4
Whakawehea te -56 ki te 14, kia riro ko -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}