Aromātai
\frac{14}{15}\approx 0.933333333
Tauwehe
\frac{2 \cdot 7}{3 \cdot 5} = 0.9333333333333333
Tohaina
Kua tāruatia ki te papatopenga
-\frac{2}{3}\left(-\frac{4+3}{4}\right)\times \frac{2\times 5+4}{5}-\frac{2\times 3+1}{3}
Whakareatia te 1 ki te 4, ka 4.
-\frac{2}{3}\left(-\frac{7}{4}\right)\times \frac{2\times 5+4}{5}-\frac{2\times 3+1}{3}
Tāpirihia te 4 ki te 3, ka 7.
\frac{-2\left(-7\right)}{3\times 4}\times \frac{2\times 5+4}{5}-\frac{2\times 3+1}{3}
Me whakarea te -\frac{2}{3} ki te -\frac{7}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{14}{12}\times \frac{2\times 5+4}{5}-\frac{2\times 3+1}{3}
Mahia ngā whakarea i roto i te hautanga \frac{-2\left(-7\right)}{3\times 4}.
\frac{7}{6}\times \frac{2\times 5+4}{5}-\frac{2\times 3+1}{3}
Whakahekea te hautanga \frac{14}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{7}{6}\times \frac{10+4}{5}-\frac{2\times 3+1}{3}
Whakareatia te 2 ki te 5, ka 10.
\frac{7}{6}\times \frac{14}{5}-\frac{2\times 3+1}{3}
Tāpirihia te 10 ki te 4, ka 14.
\frac{7\times 14}{6\times 5}-\frac{2\times 3+1}{3}
Me whakarea te \frac{7}{6} ki te \frac{14}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{98}{30}-\frac{2\times 3+1}{3}
Mahia ngā whakarea i roto i te hautanga \frac{7\times 14}{6\times 5}.
\frac{49}{15}-\frac{2\times 3+1}{3}
Whakahekea te hautanga \frac{98}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{49}{15}-\frac{6+1}{3}
Whakareatia te 2 ki te 3, ka 6.
\frac{49}{15}-\frac{7}{3}
Tāpirihia te 6 ki te 1, ka 7.
\frac{49}{15}-\frac{35}{15}
Ko te maha noa iti rawa atu o 15 me 3 ko 15. Me tahuri \frac{49}{15} me \frac{7}{3} ki te hautau me te tautūnga 15.
\frac{49-35}{15}
Tā te mea he rite te tauraro o \frac{49}{15} me \frac{35}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{14}{15}
Tangohia te 35 i te 49, ka 14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}