Aromātai
-\frac{13}{12}\approx -1.083333333
Tauwehe
-\frac{13}{12} = -1\frac{1}{12} = -1.0833333333333333
Tohaina
Kua tāruatia ki te papatopenga
-\frac{4}{6}-\frac{1}{6}-\left(-\frac{1}{4}\right)-\frac{1}{2}
Ko te maha noa iti rawa atu o 3 me 6 ko 6. Me tahuri -\frac{2}{3} me \frac{1}{6} ki te hautau me te tautūnga 6.
\frac{-4-1}{6}-\left(-\frac{1}{4}\right)-\frac{1}{2}
Tā te mea he rite te tauraro o -\frac{4}{6} me \frac{1}{6}, me tango rāua mā te tango i ō raua taurunga.
-\frac{5}{6}-\left(-\frac{1}{4}\right)-\frac{1}{2}
Tangohia te 1 i te -4, ka -5.
-\frac{5}{6}+\frac{1}{4}-\frac{1}{2}
Ko te tauaro o -\frac{1}{4} ko \frac{1}{4}.
-\frac{10}{12}+\frac{3}{12}-\frac{1}{2}
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri -\frac{5}{6} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{-10+3}{12}-\frac{1}{2}
Tā te mea he rite te tauraro o -\frac{10}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{7}{12}-\frac{1}{2}
Tāpirihia te -10 ki te 3, ka -7.
-\frac{7}{12}-\frac{6}{12}
Ko te maha noa iti rawa atu o 12 me 2 ko 12. Me tahuri -\frac{7}{12} me \frac{1}{2} ki te hautau me te tautūnga 12.
\frac{-7-6}{12}
Tā te mea he rite te tauraro o -\frac{7}{12} me \frac{6}{12}, me tango rāua mā te tango i ō raua taurunga.
-\frac{13}{12}
Tangohia te 6 i te -7, ka -13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}