Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(-\frac{12}{7}\right)^{1}a^{4}b^{4}}{\left(-\frac{6}{7}\right)^{1}a^{3}b^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}a^{4-3}b^{4-2}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}a^{1}b^{4-2}
Tango 3 mai i 4.
\frac{\left(-\frac{12}{7}\right)^{1}}{\left(-\frac{6}{7}\right)^{1}}ab^{2}
Tango 2 mai i 4.
2ab^{2}
Whakawehe -\frac{12}{7} ki te -\frac{6}{7} mā te whakarea -\frac{12}{7} ki te tau huripoki o -\frac{6}{7}.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{\frac{12b^{4}}{7}}{-\frac{6b^{2}}{7}}\right)a^{4-3})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}a}(2b^{2}a^{1})
Mahia ngā tātaitanga.
2b^{2}a^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
2b^{2}a^{0}
Mahia ngā tātaitanga.
2b^{2}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
2b^{2}
Mō tētahi kupu t, t\times 1=t me 1t=t.