Aromātai
\frac{9}{7}\approx 1.285714286
Tauwehe
\frac{3 ^ {2}}{7} = 1\frac{2}{7} = 1.2857142857142858
Tohaina
Kua tāruatia ki te papatopenga
-\frac{11}{14}+\frac{8}{14}-\left(-\frac{1\times 2+1}{2}\right)
Ko te maha noa iti rawa atu o 14 me 7 ko 14. Me tahuri -\frac{11}{14} me \frac{4}{7} ki te hautau me te tautūnga 14.
\frac{-11+8}{14}-\left(-\frac{1\times 2+1}{2}\right)
Tā te mea he rite te tauraro o -\frac{11}{14} me \frac{8}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{3}{14}-\left(-\frac{1\times 2+1}{2}\right)
Tāpirihia te -11 ki te 8, ka -3.
-\frac{3}{14}-\left(-\frac{2+1}{2}\right)
Whakareatia te 1 ki te 2, ka 2.
-\frac{3}{14}-\left(-\frac{3}{2}\right)
Tāpirihia te 2 ki te 1, ka 3.
-\frac{3}{14}+\frac{3}{2}
Ko te tauaro o -\frac{3}{2} ko \frac{3}{2}.
-\frac{3}{14}+\frac{21}{14}
Ko te maha noa iti rawa atu o 14 me 2 ko 14. Me tahuri -\frac{3}{14} me \frac{3}{2} ki te hautau me te tautūnga 14.
\frac{-3+21}{14}
Tā te mea he rite te tauraro o -\frac{3}{14} me \frac{21}{14}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{18}{14}
Tāpirihia te -3 ki te 21, ka 18.
\frac{9}{7}
Whakahekea te hautanga \frac{18}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}