Aromātai
-\frac{4}{3}\approx -1.333333333
Tauwehe
-\frac{4}{3} = -1\frac{1}{3} = -1.3333333333333333
Tohaina
Kua tāruatia ki te papatopenga
-\frac{1}{3}\times 125+3\times 25-8\times 5-\left(-\frac{64}{3}+48-32\right)
Tātaihia te 5 mā te pū o 3, kia riro ko 125.
\frac{-125}{3}+3\times 25-8\times 5-\left(-\frac{64}{3}+48-32\right)
Tuhia te -\frac{1}{3}\times 125 hei hautanga kotahi.
-\frac{125}{3}+3\times 25-8\times 5-\left(-\frac{64}{3}+48-32\right)
Ka taea te hautanga \frac{-125}{3} te tuhi anō ko -\frac{125}{3} mā te tango i te tohu tōraro.
-\frac{125}{3}+75-8\times 5-\left(-\frac{64}{3}+48-32\right)
Whakareatia te 3 ki te 25, ka 75.
-\frac{125}{3}+\frac{225}{3}-8\times 5-\left(-\frac{64}{3}+48-32\right)
Me tahuri te 75 ki te hautau \frac{225}{3}.
\frac{-125+225}{3}-8\times 5-\left(-\frac{64}{3}+48-32\right)
Tā te mea he rite te tauraro o -\frac{125}{3} me \frac{225}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{100}{3}-8\times 5-\left(-\frac{64}{3}+48-32\right)
Tāpirihia te -125 ki te 225, ka 100.
\frac{100}{3}-40-\left(-\frac{64}{3}+48-32\right)
Whakareatia te 8 ki te 5, ka 40.
\frac{100}{3}-\frac{120}{3}-\left(-\frac{64}{3}+48-32\right)
Me tahuri te 40 ki te hautau \frac{120}{3}.
\frac{100-120}{3}-\left(-\frac{64}{3}+48-32\right)
Tā te mea he rite te tauraro o \frac{100}{3} me \frac{120}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{20}{3}-\left(-\frac{64}{3}+48-32\right)
Tangohia te 120 i te 100, ka -20.
-\frac{20}{3}-\left(-\frac{64}{3}+\frac{144}{3}-32\right)
Me tahuri te 48 ki te hautau \frac{144}{3}.
-\frac{20}{3}-\left(\frac{-64+144}{3}-32\right)
Tā te mea he rite te tauraro o -\frac{64}{3} me \frac{144}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{20}{3}-\left(\frac{80}{3}-32\right)
Tāpirihia te -64 ki te 144, ka 80.
-\frac{20}{3}-\left(\frac{80}{3}-\frac{96}{3}\right)
Me tahuri te 32 ki te hautau \frac{96}{3}.
-\frac{20}{3}-\frac{80-96}{3}
Tā te mea he rite te tauraro o \frac{80}{3} me \frac{96}{3}, me tango rāua mā te tango i ō raua taurunga.
-\frac{20}{3}-\left(-\frac{16}{3}\right)
Tangohia te 96 i te 80, ka -16.
-\frac{20}{3}+\frac{16}{3}
Ko te tauaro o -\frac{16}{3} ko \frac{16}{3}.
\frac{-20+16}{3}
Tā te mea he rite te tauraro o -\frac{20}{3} me \frac{16}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{4}{3}
Tāpirihia te -20 ki te 16, ka -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}