Aromātai
-\frac{1}{8}=-0.125
Tauwehe
-\frac{1}{8} = -0.125
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{4}}{-\frac{1}{3}}\left(\frac{1}{2}-\frac{1}{3}\right)
Tātaihia te -\frac{1}{2} mā te pū o 2, kia riro ko \frac{1}{4}.
\frac{1}{4}\left(-3\right)\left(\frac{1}{2}-\frac{1}{3}\right)
Whakawehe \frac{1}{4} ki te -\frac{1}{3} mā te whakarea \frac{1}{4} ki te tau huripoki o -\frac{1}{3}.
\frac{-3}{4}\left(\frac{1}{2}-\frac{1}{3}\right)
Whakareatia te \frac{1}{4} ki te -3, ka \frac{-3}{4}.
-\frac{3}{4}\left(\frac{1}{2}-\frac{1}{3}\right)
Ka taea te hautanga \frac{-3}{4} te tuhi anō ko -\frac{3}{4} mā te tango i te tohu tōraro.
-\frac{3}{4}\left(\frac{3}{6}-\frac{2}{6}\right)
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
-\frac{3}{4}\times \frac{3-2}{6}
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{2}{6}, me tango rāua mā te tango i ō raua taurunga.
-\frac{3}{4}\times \frac{1}{6}
Tangohia te 2 i te 3, ka 1.
\frac{-3}{4\times 6}
Me whakarea te -\frac{3}{4} ki te \frac{1}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-3}{24}
Mahia ngā whakarea i roto i te hautanga \frac{-3}{4\times 6}.
-\frac{1}{8}
Whakahekea te hautanga \frac{-3}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}