Aromātai
\frac{28704}{5}=5740.8
Tauwehe
\frac{2 ^ {5} \cdot 3 \cdot 13 \cdot 23}{5} = 5740\frac{4}{5} = 5740.8
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{\frac{270+3}{10}-134\times 2}{-\frac{1}{8}}-12\right)\times 3
Whakareatia te 27 ki te 10, ka 270.
\left(\frac{\frac{273}{10}-134\times 2}{-\frac{1}{8}}-12\right)\times 3
Tāpirihia te 270 ki te 3, ka 273.
\left(\frac{\frac{273}{10}-268}{-\frac{1}{8}}-12\right)\times 3
Whakareatia te 134 ki te 2, ka 268.
\left(\frac{\frac{273}{10}-\frac{2680}{10}}{-\frac{1}{8}}-12\right)\times 3
Me tahuri te 268 ki te hautau \frac{2680}{10}.
\left(\frac{\frac{273-2680}{10}}{-\frac{1}{8}}-12\right)\times 3
Tā te mea he rite te tauraro o \frac{273}{10} me \frac{2680}{10}, me tango rāua mā te tango i ō raua taurunga.
\left(\frac{-\frac{2407}{10}}{-\frac{1}{8}}-12\right)\times 3
Tangohia te 2680 i te 273, ka -2407.
\left(-\frac{2407}{10}\left(-8\right)-12\right)\times 3
Whakawehe -\frac{2407}{10} ki te -\frac{1}{8} mā te whakarea -\frac{2407}{10} ki te tau huripoki o -\frac{1}{8}.
\left(\frac{-2407\left(-8\right)}{10}-12\right)\times 3
Tuhia te -\frac{2407}{10}\left(-8\right) hei hautanga kotahi.
\left(\frac{19256}{10}-12\right)\times 3
Whakareatia te -2407 ki te -8, ka 19256.
\left(\frac{9628}{5}-12\right)\times 3
Whakahekea te hautanga \frac{19256}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\left(\frac{9628}{5}-\frac{60}{5}\right)\times 3
Me tahuri te 12 ki te hautau \frac{60}{5}.
\frac{9628-60}{5}\times 3
Tā te mea he rite te tauraro o \frac{9628}{5} me \frac{60}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{9568}{5}\times 3
Tangohia te 60 i te 9628, ka 9568.
\frac{9568\times 3}{5}
Tuhia te \frac{9568}{5}\times 3 hei hautanga kotahi.
\frac{28704}{5}
Whakareatia te 9568 ki te 3, ka 28704.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}