( ( 20 - a ) ( 380 + 5 a ) = 32000
Whakaoti mō a
a=-28+64i
a=-28-64i
Tohaina
Kua tāruatia ki te papatopenga
7600-280a-5a^{2}=32000
Whakamahia te āhuatanga tuaritanga hei whakarea te 20-a ki te 380+5a ka whakakotahi i ngā kupu rite.
7600-280a-5a^{2}-32000=0
Tangohia te 32000 mai i ngā taha e rua.
-24400-280a-5a^{2}=0
Tangohia te 32000 i te 7600, ka -24400.
-5a^{2}-280a-24400=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-280\right)±\sqrt{\left(-280\right)^{2}-4\left(-5\right)\left(-24400\right)}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, -280 mō b, me -24400 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-280\right)±\sqrt{78400-4\left(-5\right)\left(-24400\right)}}{2\left(-5\right)}
Pūrua -280.
a=\frac{-\left(-280\right)±\sqrt{78400+20\left(-24400\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
a=\frac{-\left(-280\right)±\sqrt{78400-488000}}{2\left(-5\right)}
Whakareatia 20 ki te -24400.
a=\frac{-\left(-280\right)±\sqrt{-409600}}{2\left(-5\right)}
Tāpiri 78400 ki te -488000.
a=\frac{-\left(-280\right)±640i}{2\left(-5\right)}
Tuhia te pūtakerua o te -409600.
a=\frac{280±640i}{2\left(-5\right)}
Ko te tauaro o -280 ko 280.
a=\frac{280±640i}{-10}
Whakareatia 2 ki te -5.
a=\frac{280+640i}{-10}
Nā, me whakaoti te whārite a=\frac{280±640i}{-10} ina he tāpiri te ±. Tāpiri 280 ki te 640i.
a=-28-64i
Whakawehe 280+640i ki te -10.
a=\frac{280-640i}{-10}
Nā, me whakaoti te whārite a=\frac{280±640i}{-10} ina he tango te ±. Tango 640i mai i 280.
a=-28+64i
Whakawehe 280-640i ki te -10.
a=-28-64i a=-28+64i
Kua oti te whārite te whakatau.
7600-280a-5a^{2}=32000
Whakamahia te āhuatanga tuaritanga hei whakarea te 20-a ki te 380+5a ka whakakotahi i ngā kupu rite.
-280a-5a^{2}=32000-7600
Tangohia te 7600 mai i ngā taha e rua.
-280a-5a^{2}=24400
Tangohia te 7600 i te 32000, ka 24400.
-5a^{2}-280a=24400
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-5a^{2}-280a}{-5}=\frac{24400}{-5}
Whakawehea ngā taha e rua ki te -5.
a^{2}+\left(-\frac{280}{-5}\right)a=\frac{24400}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
a^{2}+56a=\frac{24400}{-5}
Whakawehe -280 ki te -5.
a^{2}+56a=-4880
Whakawehe 24400 ki te -5.
a^{2}+56a+28^{2}=-4880+28^{2}
Whakawehea te 56, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 28. Nā, tāpiria te pūrua o te 28 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+56a+784=-4880+784
Pūrua 28.
a^{2}+56a+784=-4096
Tāpiri -4880 ki te 784.
\left(a+28\right)^{2}=-4096
Tauwehea a^{2}+56a+784. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+28\right)^{2}}=\sqrt{-4096}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+28=64i a+28=-64i
Whakarūnātia.
a=-28+64i a=-28-64i
Me tango 28 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}