Whakaoti mō x
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
0x+1\times 5+2\times 6+3\times 3+4\times 2=2\left(x+16\right)
Tē taea kia ōrite te tāupe x ki -16 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+16.
0x+5+12+9+8=2\left(x+16\right)
Mahia ngā whakarea.
0+5+12+9+8=2\left(x+16\right)
Ko te tau i whakarea ki te kore ka hua ko te kore.
5+12+9+8=2\left(x+16\right)
Tāpirihia te 0 ki te 5, ka 5.
17+9+8=2\left(x+16\right)
Tāpirihia te 5 ki te 12, ka 17.
26+8=2\left(x+16\right)
Tāpirihia te 17 ki te 9, ka 26.
34=2\left(x+16\right)
Tāpirihia te 26 ki te 8, ka 34.
34=2x+32
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+16.
2x+32=34
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x=34-32
Tangohia te 32 mai i ngā taha e rua.
2x=2
Tangohia te 32 i te 34, ka 2.
x=\frac{2}{2}
Whakawehea ngā taha e rua ki te 2.
x=1
Whakawehea te 2 ki te 2, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}