Aromātai
\frac{17}{8}=2.125
Tauwehe
\frac{17}{2 ^ {3}} = 2\frac{1}{8} = 2.125
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(-\frac{1}{4}\right)^{2}+\left(2-\frac{1}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\frac{\left(\frac{17}{2}\right)^{4}}{\left(\frac{17}{2}\right)^{3}}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 1 i te 3 kia riro ai te 2.
\frac{\left(-\frac{1}{4}\right)^{2}+\left(2-\frac{1}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 3 i te 4 kia riro ai te 1.
\frac{\frac{1}{16}+\left(2-\frac{1}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Tātaihia te -\frac{1}{4} mā te pū o 2, kia riro ko \frac{1}{16}.
\frac{\frac{1}{16}+\left(\frac{3}{2}\right)^{4}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Tangohia te \frac{1}{2} i te 2, ka \frac{3}{2}.
\frac{\frac{1}{16}+\frac{81}{16}\left(1-\frac{5}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Tātaihia te \frac{3}{2} mā te pū o 4, kia riro ko \frac{81}{16}.
\frac{\frac{1}{16}+\frac{81}{16}\times \left(\frac{4}{9}\right)^{2}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Tangohia te \frac{5}{9} i te 1, ka \frac{4}{9}.
\frac{\frac{1}{16}+\frac{81}{16}\times \frac{16}{81}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Tātaihia te \frac{4}{9} mā te pū o 2, kia riro ko \frac{16}{81}.
\frac{\frac{1}{16}+1}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Whakareatia te \frac{81}{16} ki te \frac{16}{81}, ka 1.
\frac{\frac{17}{16}}{\left(\frac{17}{2}\right)^{1}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Tāpirihia te \frac{1}{16} ki te 1, ka \frac{17}{16}.
\frac{\frac{17}{16}}{\frac{17}{2}+\frac{3}{2}\left(-1\right)^{2}-1+\frac{1}{4}}\times \frac{37}{2}
Tātaihia te \frac{17}{2} mā te pū o 1, kia riro ko \frac{17}{2}.
\frac{\frac{17}{16}}{\frac{17}{2}+\frac{3}{2}\times 1-1+\frac{1}{4}}\times \frac{37}{2}
Tātaihia te -1 mā te pū o 2, kia riro ko 1.
\frac{\frac{17}{16}}{\frac{17}{2}+\frac{3}{2}-1+\frac{1}{4}}\times \frac{37}{2}
Whakareatia te \frac{3}{2} ki te 1, ka \frac{3}{2}.
\frac{\frac{17}{16}}{10-1+\frac{1}{4}}\times \frac{37}{2}
Tāpirihia te \frac{17}{2} ki te \frac{3}{2}, ka 10.
\frac{\frac{17}{16}}{9+\frac{1}{4}}\times \frac{37}{2}
Tangohia te 1 i te 10, ka 9.
\frac{\frac{17}{16}}{\frac{37}{4}}\times \frac{37}{2}
Tāpirihia te 9 ki te \frac{1}{4}, ka \frac{37}{4}.
\frac{17}{16}\times \frac{4}{37}\times \frac{37}{2}
Whakawehe \frac{17}{16} ki te \frac{37}{4} mā te whakarea \frac{17}{16} ki te tau huripoki o \frac{37}{4}.
\frac{17}{148}\times \frac{37}{2}
Whakareatia te \frac{17}{16} ki te \frac{4}{37}, ka \frac{17}{148}.
\frac{17}{8}
Whakareatia te \frac{17}{148} ki te \frac{37}{2}, ka \frac{17}{8}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}