Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2\sqrt{8114}+1\right)^{2}
Tauwehea te 32456=2^{2}\times 8114. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 8114} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{8114}. Tuhia te pūtakerua o te 2^{2}.
4\left(\sqrt{8114}\right)^{2}+4\sqrt{8114}+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2\sqrt{8114}+1\right)^{2}.
4\times 8114+4\sqrt{8114}+1
Ko te pūrua o \sqrt{8114} ko 8114.
32456+4\sqrt{8114}+1
Whakareatia te 4 ki te 8114, ka 32456.
32457+4\sqrt{8114}
Tāpirihia te 32456 ki te 1, ka 32457.
\left(2\sqrt{8114}+1\right)^{2}
Tauwehea te 32456=2^{2}\times 8114. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 8114} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{8114}. Tuhia te pūtakerua o te 2^{2}.
4\left(\sqrt{8114}\right)^{2}+4\sqrt{8114}+1
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2\sqrt{8114}+1\right)^{2}.
4\times 8114+4\sqrt{8114}+1
Ko te pūrua o \sqrt{8114} ko 8114.
32456+4\sqrt{8114}+1
Whakareatia te 4 ki te 8114, ka 32456.
32457+4\sqrt{8114}
Tāpirihia te 32456 ki te 1, ka 32457.