Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}+2x+1=-10
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x^{2}+2x+1-\left(-10\right)=-10-\left(-10\right)
Me tāpiri 10 ki ngā taha e rua o te whārite.
x^{2}+2x+1-\left(-10\right)=0
Mā te tango i te -10 i a ia ake anō ka toe ko te 0.
x^{2}+2x+11=0
Tango -10 mai i 1.
x=\frac{-2±\sqrt{2^{2}-4\times 11}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me 11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 11}}{2}
Pūrua 2.
x=\frac{-2±\sqrt{4-44}}{2}
Whakareatia -4 ki te 11.
x=\frac{-2±\sqrt{-40}}{2}
Tāpiri 4 ki te -44.
x=\frac{-2±2\sqrt{10}i}{2}
Tuhia te pūtakerua o te -40.
x=\frac{-2+2\sqrt{10}i}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{10}i}{2} ina he tāpiri te ±. Tāpiri -2 ki te 2i\sqrt{10}.
x=-1+\sqrt{10}i
Whakawehe -2+2i\sqrt{10} ki te 2.
x=\frac{-2\sqrt{10}i-2}{2}
Nā, me whakaoti te whārite x=\frac{-2±2\sqrt{10}i}{2} ina he tango te ±. Tango 2i\sqrt{10} mai i -2.
x=-\sqrt{10}i-1
Whakawehe -2-2i\sqrt{10} ki te 2.
x=-1+\sqrt{10}i x=-\sqrt{10}i-1
Kua oti te whārite te whakatau.
x^{2}+2x+1=-10
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\left(x+1\right)^{2}=-10
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{-10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\sqrt{10}i x+1=-\sqrt{10}i
Whakarūnātia.
x=-1+\sqrt{10}i x=-\sqrt{10}i-1
Me tango 1 mai i ngā taha e rua o te whārite.