Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{\sqrt{3}}{3}+\sin(30)\right)\cos(30)
Tīkina te uara \tan(30) mai i te ripanga uara pākoki.
\left(\frac{\sqrt{3}}{3}+\frac{1}{2}\right)\cos(30)
Tīkina te uara \sin(30) mai i te ripanga uara pākoki.
\left(\frac{2\sqrt{3}}{6}+\frac{3}{6}\right)\cos(30)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 2 ko 6. Whakareatia \frac{\sqrt{3}}{3} ki te \frac{2}{2}. Whakareatia \frac{1}{2} ki te \frac{3}{3}.
\frac{2\sqrt{3}+3}{6}\cos(30)
Tā te mea he rite te tauraro o \frac{2\sqrt{3}}{6} me \frac{3}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2\sqrt{3}+3}{6}\times \frac{\sqrt{3}}{2}
Tīkina te uara \cos(30) mai i te ripanga uara pākoki.
\frac{\left(2\sqrt{3}+3\right)\sqrt{3}}{6\times 2}
Me whakarea te \frac{2\sqrt{3}+3}{6} ki te \frac{\sqrt{3}}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(2\sqrt{3}+3\right)\sqrt{3}}{12}
Whakareatia te 6 ki te 2, ka 12.
\frac{2\left(\sqrt{3}\right)^{2}+3\sqrt{3}}{12}
Whakamahia te āhuatanga tohatoha hei whakarea te 2\sqrt{3}+3 ki te \sqrt{3}.
\frac{2\times 3+3\sqrt{3}}{12}
Ko te pūrua o \sqrt{3} ko 3.
\frac{6+3\sqrt{3}}{12}
Whakareatia te 2 ki te 3, ka 6.