Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{x+2}\right)^{2}-2^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x+2-2^{2}
Tātaihia te \sqrt{x+2} mā te pū o 2, kia riro ko x+2.
x+2-4
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
x-2
Tangohia te 4 i te 2, ka -2.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\sqrt{x+2}\right)^{2}-2^{2})
Whakaarohia te \left(\sqrt{x+2}-2\right)\left(\sqrt{x+2}+2\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x+2-2^{2})
Tātaihia te \sqrt{x+2} mā te pū o 2, kia riro ko x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(x+2-4)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\mathrm{d}}{\mathrm{d}x}(x-2)
Tangohia te 4 i te 2, ka -2.
x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
x^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.