Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\sqrt{2}x\left(-\sqrt{2}\right)x
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
3\sqrt{2}x^{2}\left(-\sqrt{2}\right)
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(3\sqrt{2}x\left(-\sqrt{2}\right)x)
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{\mathrm{d}}{\mathrm{d}x}(3\sqrt{2}x^{2}\left(-\sqrt{2}\right))
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-3\sqrt{2}x^{2}\sqrt{2})
Whakareatia te 3 ki te -1, ka -3.
\frac{\mathrm{d}}{\mathrm{d}x}(-3\times 2x^{2})
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{\mathrm{d}}{\mathrm{d}x}(-6x^{2})
Whakareatia te -3 ki te 2, ka -6.
2\left(-6\right)x^{2-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-12x^{2-1}
Whakareatia 2 ki te -6.
-12x^{1}
Tango 1 mai i 2.
-12x
Mō tētahi kupu t, t^{1}=t.