Aromātai
6\sqrt{6}+6\approx 20.696938457
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( \sqrt{ 18 } +3 \sqrt{ 3 } - \sqrt{ 12 } ) \times 2 \sqrt{ 3 }
Tohaina
Kua tāruatia ki te papatopenga
2\left(3\sqrt{2}+3\sqrt{3}-\sqrt{12}\right)\sqrt{3}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
2\left(3\sqrt{2}+3\sqrt{3}-2\sqrt{3}\right)\sqrt{3}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
2\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{3}
Pahekotia te 3\sqrt{3} me -2\sqrt{3}, ka \sqrt{3}.
\left(6\sqrt{2}+2\sqrt{3}\right)\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3\sqrt{2}+\sqrt{3}.
6\sqrt{2}\sqrt{3}+2\left(\sqrt{3}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 6\sqrt{2}+2\sqrt{3} ki te \sqrt{3}.
6\sqrt{6}+2\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
6\sqrt{6}+2\times 3
Ko te pūrua o \sqrt{3} ko 3.
6\sqrt{6}+6
Whakareatia te 2 ki te 3, ka 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}