Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(3\sqrt{2}+3\sqrt{3}-\sqrt{12}\right)\sqrt{3}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
2\left(3\sqrt{2}+3\sqrt{3}-2\sqrt{3}\right)\sqrt{3}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
2\left(3\sqrt{2}+\sqrt{3}\right)\sqrt{3}
Pahekotia te 3\sqrt{3} me -2\sqrt{3}, ka \sqrt{3}.
\left(6\sqrt{2}+2\sqrt{3}\right)\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 3\sqrt{2}+\sqrt{3}.
6\sqrt{2}\sqrt{3}+2\left(\sqrt{3}\right)^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 6\sqrt{2}+2\sqrt{3} ki te \sqrt{3}.
6\sqrt{6}+2\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
6\sqrt{6}+2\times 3
Ko te pūrua o \sqrt{3} ko 3.
6\sqrt{6}+6
Whakareatia te 2 ki te 3, ka 6.