Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2\sqrt{3}-\sqrt{27}}{\sqrt{3}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{3}-3\sqrt{3}}{\sqrt{3}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{-\sqrt{3}}{\sqrt{3}}
Pahekotia te 2\sqrt{3} me -3\sqrt{3}, ka -\sqrt{3}.
\frac{-\sqrt{3}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{-\sqrt{3}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{-\sqrt{3}\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{-3}{3}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
-1
Whakawehea te -3 ki te 3, kia riro ko -1.