Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{x-1}\right)^{2}-1^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x-1-1^{2}
Tātaihia te \sqrt{x-1} mā te pū o 2, kia riro ko x-1.
x-1-1
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
x-2
Tangohia te 1 i te -1, ka -2.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\sqrt{x-1}\right)^{2}-1^{2})
Whakaarohia te \left(\sqrt{x-1}-1\right)\left(\sqrt{x-1}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x-1-1^{2})
Tātaihia te \sqrt{x-1} mā te pū o 2, kia riro ko x-1.
\frac{\mathrm{d}}{\mathrm{d}x}(x-1-1)
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{\mathrm{d}}{\mathrm{d}x}(x-2)
Tangohia te 1 i te -1, ka -2.
x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
x^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.