Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{x}\right)^{2}-\left(\sqrt{7}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x-\left(\sqrt{7}\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x-7
Ko te pūrua o \sqrt{7} ko 7.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\sqrt{x}\right)^{2}-\left(\sqrt{7}\right)^{2})
Whakaarohia te \left(\sqrt{x}-\sqrt{7}\right)\left(\sqrt{x}+\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(\sqrt{7}\right)^{2})
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
\frac{\mathrm{d}}{\mathrm{d}x}(x-7)
Ko te pūrua o \sqrt{7} ko 7.
x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
x^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.