Aromātai
x-2
Kimi Pārōnaki e ai ki x
1
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
( \sqrt { x } - \sqrt { 2 } ) ( \sqrt { x } + \sqrt { 2 } )
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{x}\right)^{2}-\left(\sqrt{2}\right)^{2}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x-\left(\sqrt{2}\right)^{2}
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
x-2
Ko te pūrua o \sqrt{2} ko 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(\sqrt{x}\right)^{2}-\left(\sqrt{2}\right)^{2})
Whakaarohia te \left(\sqrt{x}-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(\sqrt{2}\right)^{2})
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
\frac{\mathrm{d}}{\mathrm{d}x}(x-2)
Ko te pūrua o \sqrt{2} ko 2.
x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
x^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}