Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō b (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Whakaarohia te \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
a-b=a-b
Tātaihia te \sqrt{b} mā te pū o 2, kia riro ko b.
a-b-a=-b
Tangohia te a mai i ngā taha e rua.
-b=-b
Pahekotia te a me -a, ka 0.
b=b
Me whakakore te -1 ki ngā taha e rua.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
a\in \mathrm{C}
He pono tēnei mō tētahi a ahakoa.
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Whakaarohia te \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
a-b=a-b
Tātaihia te \sqrt{b} mā te pū o 2, kia riro ko b.
a-b+b=a
Me tāpiri te b ki ngā taha e rua.
a=a
Pahekotia te -b me b, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
b\in \mathrm{C}
He pono tēnei mō tētahi b ahakoa.
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Whakaarohia te \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
a-b=a-b
Tātaihia te \sqrt{b} mā te pū o 2, kia riro ko b.
a-b-a=-b
Tangohia te a mai i ngā taha e rua.
-b=-b
Pahekotia te a me -a, ka 0.
b=b
Me whakakore te -1 ki ngā taha e rua.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
a\in \mathrm{R}
He pono tēnei mō tētahi a ahakoa.
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Whakaarohia te \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
a-b=a-b
Tātaihia te \sqrt{b} mā te pū o 2, kia riro ko b.
a-b+b=a
Me tāpiri te b ki ngā taha e rua.
a=a
Pahekotia te -b me b, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
b\in \mathrm{R}
He pono tēnei mō tētahi b ahakoa.