Whakaoti mō a (complex solution)
a\in \mathrm{C}
Whakaoti mō b (complex solution)
b\in \mathrm{C}
Whakaoti mō a
a\geq 0
b\geq 0
Whakaoti mō b
b\geq 0
a\geq 0
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Whakaarohia te \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
a-b=a-b
Tātaihia te \sqrt{b} mā te pū o 2, kia riro ko b.
a-b-a=-b
Tangohia te a mai i ngā taha e rua.
-b=-b
Pahekotia te a me -a, ka 0.
b=b
Me whakakore te -1 ki ngā taha e rua.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
a\in \mathrm{C}
He pono tēnei mō tētahi a ahakoa.
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Whakaarohia te \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
a-b=a-b
Tātaihia te \sqrt{b} mā te pū o 2, kia riro ko b.
a-b+b=a
Me tāpiri te b ki ngā taha e rua.
a=a
Pahekotia te -b me b, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
b\in \mathrm{C}
He pono tēnei mō tētahi b ahakoa.
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Whakaarohia te \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
a-b=a-b
Tātaihia te \sqrt{b} mā te pū o 2, kia riro ko b.
a-b-a=-b
Tangohia te a mai i ngā taha e rua.
-b=-b
Pahekotia te a me -a, ka 0.
b=b
Me whakakore te -1 ki ngā taha e rua.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
a\in \mathrm{R}
He pono tēnei mō tētahi a ahakoa.
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
Whakaarohia te \left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a-\left(\sqrt{b}\right)^{2}=a-b
Tātaihia te \sqrt{a} mā te pū o 2, kia riro ko a.
a-b=a-b
Tātaihia te \sqrt{b} mā te pū o 2, kia riro ko b.
a-b+b=a
Me tāpiri te b ki ngā taha e rua.
a=a
Pahekotia te -b me b, ka 0.
\text{true}
Whakaraupapatia anō ngā kīanga tau.
b\in \mathrm{R}
He pono tēnei mō tētahi b ahakoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}