( \sqrt { 8 } - 2 \sqrt { 025 ) } - ( \sqrt { 1 \frac { 1 } { 8 } } + \sqrt { 50 } + \frac { 2 } { 3 } \sqrt { 12 } )
Aromātai
-\frac{4\sqrt{3}}{3}-\frac{15\sqrt{2}}{4}-10\approx -17.612701936
Tauwehe
\frac{-16 \sqrt{3} - 45 \sqrt{2} - 120}{12} = -17.612701935657608
Tohaina
Kua tāruatia ki te papatopenga
2\sqrt{2}-2\sqrt{25}-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{2}-2\times 5-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tātaitia te pūtakerua o 25 kia tae ki 5.
2\sqrt{2}-10-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Whakareatia te -2 ki te 5, ka -10.
2\sqrt{2}-10-\left(\sqrt{\frac{8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Whakareatia te 1 ki te 8, ka 8.
2\sqrt{2}-10-\left(\sqrt{\frac{9}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tāpirihia te 8 ki te 1, ka 9.
2\sqrt{2}-10-\left(\frac{\sqrt{9}}{\sqrt{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{9}{8}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{8}}.
2\sqrt{2}-10-\left(\frac{3}{\sqrt{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tātaitia te pūtakerua o 9 kia tae ki 3.
2\sqrt{2}-10-\left(\frac{3}{2\sqrt{2}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Whakangāwaritia te tauraro o \frac{3}{2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{2\times 2}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Ko te pūrua o \sqrt{2} ko 2.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{4}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Whakareatia te 2 ki te 2, ka 4.
2\sqrt{2}-10-\left(\frac{3\sqrt{2}}{4}+5\sqrt{2}+\frac{2}{3}\sqrt{12}\right)
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{2}{3}\sqrt{12}\right)
Pahekotia te \frac{3\sqrt{2}}{4} me 5\sqrt{2}, ka \frac{23}{4}\sqrt{2}.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{2}{3}\times 2\sqrt{3}\right)
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{2\times 2}{3}\sqrt{3}\right)
Tuhia te \frac{2}{3}\times 2 hei hautanga kotahi.
2\sqrt{2}-10-\left(\frac{23}{4}\sqrt{2}+\frac{4}{3}\sqrt{3}\right)
Whakareatia te 2 ki te 2, ka 4.
2\sqrt{2}-10-\frac{23}{4}\sqrt{2}-\frac{4}{3}\sqrt{3}
Hei kimi i te tauaro o \frac{23}{4}\sqrt{2}+\frac{4}{3}\sqrt{3}, kimihia te tauaro o ia taurangi.
-\frac{15}{4}\sqrt{2}-10-\frac{4}{3}\sqrt{3}
Pahekotia te 2\sqrt{2} me -\frac{23}{4}\sqrt{2}, ka -\frac{15}{4}\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}