Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\sqrt{2}-2\sqrt{0.25}-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{2}-2\times 0.5-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tātaitia te pūtakerua o 0.25 kia tae ki 0.5.
2\sqrt{2}-1-\left(\sqrt{\frac{1\times 8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Whakareatia te -2 ki te 0.5, ka -1.
2\sqrt{2}-1-\left(\sqrt{\frac{8+1}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Whakareatia te 1 ki te 8, ka 8.
2\sqrt{2}-1-\left(\sqrt{\frac{9}{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tāpirihia te 8 ki te 1, ka 9.
2\sqrt{2}-1-\left(\frac{\sqrt{9}}{\sqrt{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{9}{8}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{8}}.
2\sqrt{2}-1-\left(\frac{3}{\sqrt{8}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tātaitia te pūtakerua o 9 kia tae ki 3.
2\sqrt{2}-1-\left(\frac{3}{2\sqrt{2}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{2}-1-\left(\frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Whakangāwaritia te tauraro o \frac{3}{2\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
2\sqrt{2}-1-\left(\frac{3\sqrt{2}}{2\times 2}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Ko te pūrua o \sqrt{2} ko 2.
2\sqrt{2}-1-\left(\frac{3\sqrt{2}}{4}+\sqrt{50}+\frac{2}{3}\sqrt{12}\right)
Whakareatia te 2 ki te 2, ka 4.
2\sqrt{2}-1-\left(\frac{3\sqrt{2}}{4}+5\sqrt{2}+\frac{2}{3}\sqrt{12}\right)
Tauwehea te 50=5^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 2} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{2}. Tuhia te pūtakerua o te 5^{2}.
2\sqrt{2}-1-\left(\frac{23}{4}\sqrt{2}+\frac{2}{3}\sqrt{12}\right)
Pahekotia te \frac{3\sqrt{2}}{4} me 5\sqrt{2}, ka \frac{23}{4}\sqrt{2}.
2\sqrt{2}-1-\left(\frac{23}{4}\sqrt{2}+\frac{2}{3}\times 2\sqrt{3}\right)
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
2\sqrt{2}-1-\left(\frac{23}{4}\sqrt{2}+\frac{2\times 2}{3}\sqrt{3}\right)
Tuhia te \frac{2}{3}\times 2 hei hautanga kotahi.
2\sqrt{2}-1-\left(\frac{23}{4}\sqrt{2}+\frac{4}{3}\sqrt{3}\right)
Whakareatia te 2 ki te 2, ka 4.
2\sqrt{2}-1-\frac{23}{4}\sqrt{2}-\frac{4}{3}\sqrt{3}
Hei kimi i te tauaro o \frac{23}{4}\sqrt{2}+\frac{4}{3}\sqrt{3}, kimihia te tauaro o ia taurangi.
-\frac{15}{4}\sqrt{2}-1-\frac{4}{3}\sqrt{3}
Pahekotia te 2\sqrt{2} me -\frac{23}{4}\sqrt{2}, ka -\frac{15}{4}\sqrt{2}.