Aromātai
10\sqrt{7}\approx 26.457513111
Whakaroha
10 \sqrt{7} = 26.457513111
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{7}\right)^{2}+6\sqrt{7}+9-\left(\sqrt{14}-\sqrt{2}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{7}+3\right)^{2}.
7+6\sqrt{7}+9-\left(\sqrt{14}-\sqrt{2}\right)^{2}
Ko te pūrua o \sqrt{7} ko 7.
16+6\sqrt{7}-\left(\sqrt{14}-\sqrt{2}\right)^{2}
Tāpirihia te 7 ki te 9, ka 16.
16+6\sqrt{7}-\left(\left(\sqrt{14}\right)^{2}-2\sqrt{14}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{14}-\sqrt{2}\right)^{2}.
16+6\sqrt{7}-\left(14-2\sqrt{14}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Ko te pūrua o \sqrt{14} ko 14.
16+6\sqrt{7}-\left(14-2\sqrt{2}\sqrt{7}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Tauwehea te 14=2\times 7. Tuhia anō te pūtake rua o te hua \sqrt{2\times 7} hei hua o ngā pūtake rua \sqrt{2}\sqrt{7}.
16+6\sqrt{7}-\left(14-2\times 2\sqrt{7}+\left(\sqrt{2}\right)^{2}\right)
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
16+6\sqrt{7}-\left(14-4\sqrt{7}+\left(\sqrt{2}\right)^{2}\right)
Whakareatia te -2 ki te 2, ka -4.
16+6\sqrt{7}-\left(14-4\sqrt{7}+2\right)
Ko te pūrua o \sqrt{2} ko 2.
16+6\sqrt{7}-\left(16-4\sqrt{7}\right)
Tāpirihia te 14 ki te 2, ka 16.
16+6\sqrt{7}-16+4\sqrt{7}
Hei kimi i te tauaro o 16-4\sqrt{7}, kimihia te tauaro o ia taurangi.
6\sqrt{7}+4\sqrt{7}
Tangohia te 16 i te 16, ka 0.
10\sqrt{7}
Pahekotia te 6\sqrt{7} me 4\sqrt{7}, ka 10\sqrt{7}.
\left(\sqrt{7}\right)^{2}+6\sqrt{7}+9-\left(\sqrt{14}-\sqrt{2}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{7}+3\right)^{2}.
7+6\sqrt{7}+9-\left(\sqrt{14}-\sqrt{2}\right)^{2}
Ko te pūrua o \sqrt{7} ko 7.
16+6\sqrt{7}-\left(\sqrt{14}-\sqrt{2}\right)^{2}
Tāpirihia te 7 ki te 9, ka 16.
16+6\sqrt{7}-\left(\left(\sqrt{14}\right)^{2}-2\sqrt{14}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{14}-\sqrt{2}\right)^{2}.
16+6\sqrt{7}-\left(14-2\sqrt{14}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Ko te pūrua o \sqrt{14} ko 14.
16+6\sqrt{7}-\left(14-2\sqrt{2}\sqrt{7}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Tauwehea te 14=2\times 7. Tuhia anō te pūtake rua o te hua \sqrt{2\times 7} hei hua o ngā pūtake rua \sqrt{2}\sqrt{7}.
16+6\sqrt{7}-\left(14-2\times 2\sqrt{7}+\left(\sqrt{2}\right)^{2}\right)
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
16+6\sqrt{7}-\left(14-4\sqrt{7}+\left(\sqrt{2}\right)^{2}\right)
Whakareatia te -2 ki te 2, ka -4.
16+6\sqrt{7}-\left(14-4\sqrt{7}+2\right)
Ko te pūrua o \sqrt{2} ko 2.
16+6\sqrt{7}-\left(16-4\sqrt{7}\right)
Tāpirihia te 14 ki te 2, ka 16.
16+6\sqrt{7}-16+4\sqrt{7}
Hei kimi i te tauaro o 16-4\sqrt{7}, kimihia te tauaro o ia taurangi.
6\sqrt{7}+4\sqrt{7}
Tangohia te 16 i te 16, ka 0.
10\sqrt{7}
Pahekotia te 6\sqrt{7} me 4\sqrt{7}, ka 10\sqrt{7}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}