Aromātai
5\sqrt{21}+19\approx 41.912878475
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( \sqrt { 7 } + \sqrt { 3 } ) ( \sqrt { 7 } + 4 \sqrt { 3 } )
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{7}\right)^{2}+4\sqrt{7}\sqrt{3}+\sqrt{3}\sqrt{7}+4\left(\sqrt{3}\right)^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \sqrt{7}+\sqrt{3} ki ia tau o \sqrt{7}+4\sqrt{3}.
7+4\sqrt{7}\sqrt{3}+\sqrt{3}\sqrt{7}+4\left(\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{7} ko 7.
7+4\sqrt{21}+\sqrt{3}\sqrt{7}+4\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{7} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
7+4\sqrt{21}+\sqrt{21}+4\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
7+5\sqrt{21}+4\left(\sqrt{3}\right)^{2}
Pahekotia te 4\sqrt{21} me \sqrt{21}, ka 5\sqrt{21}.
7+5\sqrt{21}+4\times 3
Ko te pūrua o \sqrt{3} ko 3.
7+5\sqrt{21}+12
Whakareatia te 4 ki te 3, ka 12.
19+5\sqrt{21}
Tāpirihia te 7 ki te 12, ka 19.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}