Aromātai
6-3\sqrt{3}\approx 0.803847577
Tauwehe
3 {(2 - \sqrt{3})} = 0.803847577
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{6}-\sqrt{2}\right)^{2}.
6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Ko te pūrua o \sqrt{6} ko 6.
6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Whakareatia te -2 ki te 2, ka -4.
6-4\sqrt{3}+2-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Ko te pūrua o \sqrt{2} ko 2.
8-4\sqrt{3}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Tāpirihia te 6 ki te 2, ka 8.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}-\sqrt{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{6-2}
Pūrua \sqrt{6}. Pūrua \sqrt{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{4}
Tangohia te 2 i te 6, ka 4.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4}
Whakareatia te \sqrt{6}-\sqrt{2} ki te \sqrt{6}-\sqrt{2}, ka \left(\sqrt{6}-\sqrt{2}\right)^{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{6}-\sqrt{2}\right)^{2}.
8-4\sqrt{3}-\frac{6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
Ko te pūrua o \sqrt{6} ko 6.
8-4\sqrt{3}-\frac{6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
8-4\sqrt{3}-\frac{6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
8-4\sqrt{3}-\frac{6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4}
Whakareatia te -2 ki te 2, ka -4.
8-4\sqrt{3}-\frac{6-4\sqrt{3}+2}{4}
Ko te pūrua o \sqrt{2} ko 2.
8-4\sqrt{3}-\frac{8-4\sqrt{3}}{4}
Tāpirihia te 6 ki te 2, ka 8.
8-4\sqrt{3}-\left(2-\sqrt{3}\right)
Whakawehea ia wā o 8-4\sqrt{3} ki te 4, kia riro ko 2-\sqrt{3}.
8-4\sqrt{3}-2+\sqrt{3}
Hei kimi i te tauaro o 2-\sqrt{3}, kimihia te tauaro o ia taurangi.
6-4\sqrt{3}+\sqrt{3}
Tangohia te 2 i te 8, ka 6.
6-3\sqrt{3}
Pahekotia te -4\sqrt{3} me \sqrt{3}, ka -3\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}