Aromātai
-\sqrt{15}-1\approx -4.872983346
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
( \sqrt { 5 } - 2 \sqrt { 3 } ) ( \sqrt { 5 } + \sqrt { 3 } )
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{5}\right)^{2}+\sqrt{5}\sqrt{3}-2\sqrt{3}\sqrt{5}-2\left(\sqrt{3}\right)^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \sqrt{5}-2\sqrt{3} ki ia tau o \sqrt{5}+\sqrt{3}.
5+\sqrt{5}\sqrt{3}-2\sqrt{3}\sqrt{5}-2\left(\sqrt{3}\right)^{2}
Ko te pūrua o \sqrt{5} ko 5.
5+\sqrt{15}-2\sqrt{3}\sqrt{5}-2\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
5+\sqrt{15}-2\sqrt{15}-2\left(\sqrt{3}\right)^{2}
Hei whakarea \sqrt{3} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
5-\sqrt{15}-2\left(\sqrt{3}\right)^{2}
Pahekotia te \sqrt{15} me -2\sqrt{15}, ka -\sqrt{15}.
5-\sqrt{15}-2\times 3
Ko te pūrua o \sqrt{3} ko 3.
5-\sqrt{15}-6
Whakareatia te -2 ki te 3, ka -6.
-1-\sqrt{15}
Tangohia te 6 i te 5, ka -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}