Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}-\left(\sqrt{6}+\sqrt{2}\right)^{2}
Whakaarohia te \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5-\left(\sqrt{3}\right)^{2}-\left(\sqrt{6}+\sqrt{2}\right)^{2}
Ko te pūrua o \sqrt{5} ko 5.
5-3-\left(\sqrt{6}+\sqrt{2}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
2-\left(\sqrt{6}+\sqrt{2}\right)^{2}
Tangohia te 3 i te 5, ka 2.
2-\left(\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{6}+\sqrt{2}\right)^{2}.
2-\left(6+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Ko te pūrua o \sqrt{6} ko 6.
2-\left(6+2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
2-\left(6+2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}\right)
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
2-\left(6+4\sqrt{3}+\left(\sqrt{2}\right)^{2}\right)
Whakareatia te 2 ki te 2, ka 4.
2-\left(6+4\sqrt{3}+2\right)
Ko te pūrua o \sqrt{2} ko 2.
2-\left(8+4\sqrt{3}\right)
Tāpirihia te 6 ki te 2, ka 8.
2-8-4\sqrt{3}
Hei kimi i te tauaro o 8+4\sqrt{3}, kimihia te tauaro o ia taurangi.
-6-4\sqrt{3}
Tangohia te 8 i te 2, ka -6.