Aromātai
2
Tauwehe
2
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{3}\times \frac{\sqrt{3}}{2}+\sin(\frac{\pi }{6})\right)\left(\cot(\frac{\pi }{4})\right)^{2}
Tīkina te uara \cos(\frac{\pi }{6}) mai i te ripanga uara pākoki.
\left(\frac{\sqrt{3}\sqrt{3}}{2}+\sin(\frac{\pi }{6})\right)\left(\cot(\frac{\pi }{4})\right)^{2}
Tuhia te \sqrt{3}\times \frac{\sqrt{3}}{2} hei hautanga kotahi.
\left(\frac{\sqrt{3}\sqrt{3}}{2}+\frac{1}{2}\right)\left(\cot(\frac{\pi }{4})\right)^{2}
Tīkina te uara \sin(\frac{\pi }{6}) mai i te ripanga uara pākoki.
\frac{\sqrt{3}\sqrt{3}+1}{2}\left(\cot(\frac{\pi }{4})\right)^{2}
Tā te mea he rite te tauraro o \frac{\sqrt{3}\sqrt{3}}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3+1}{2}\left(\cot(\frac{\pi }{4})\right)^{2}
Mahia ngā whakarea i roto o \sqrt{3}\sqrt{3}+1.
\frac{4}{2}\left(\cot(\frac{\pi }{4})\right)^{2}
Mahia ngā tātaitai i roto o 3+1.
\frac{4}{2}\times 1^{2}
Tīkina te uara \cot(\frac{\pi }{4}) mai i te ripanga uara pākoki.
\frac{4}{2}\times 1
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{4}{2}
Tuhia te \frac{4}{2}\times 1 hei hautanga kotahi.
2
Whakawehea te 4 ki te 2, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}