Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{3}\times \frac{\sqrt{3}}{2}+\sin(\frac{\pi }{6})\right)\left(\cot(\frac{\pi }{4})\right)^{2}
Tīkina te uara \cos(\frac{\pi }{6}) mai i te ripanga uara pākoki.
\left(\frac{\sqrt{3}\sqrt{3}}{2}+\sin(\frac{\pi }{6})\right)\left(\cot(\frac{\pi }{4})\right)^{2}
Tuhia te \sqrt{3}\times \frac{\sqrt{3}}{2} hei hautanga kotahi.
\left(\frac{\sqrt{3}\sqrt{3}}{2}+\frac{1}{2}\right)\left(\cot(\frac{\pi }{4})\right)^{2}
Tīkina te uara \sin(\frac{\pi }{6}) mai i te ripanga uara pākoki.
\frac{\sqrt{3}\sqrt{3}+1}{2}\left(\cot(\frac{\pi }{4})\right)^{2}
Tā te mea he rite te tauraro o \frac{\sqrt{3}\sqrt{3}}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3+1}{2}\left(\cot(\frac{\pi }{4})\right)^{2}
Mahia ngā whakarea i roto o \sqrt{3}\sqrt{3}+1.
\frac{4}{2}\left(\cot(\frac{\pi }{4})\right)^{2}
Mahia ngā tātaitai i roto o 3+1.
\frac{4}{2}\times 1^{2}
Tīkina te uara \cot(\frac{\pi }{4}) mai i te ripanga uara pākoki.
\frac{4}{2}\times 1
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{4}{2}
Tuhia te \frac{4}{2}\times 1 hei hautanga kotahi.
2
Whakawehea te 4 ki te 2, kia riro ko 2.