Aromātai
-\frac{16\sqrt{5}}{5}-\sqrt{3}\approx -8.887468336
Tohaina
Kua tāruatia ki te papatopenga
3\sqrt{3}-\sqrt{\frac{1}{5}}-\left(\sqrt{45}+\sqrt{48}\right)
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
3\sqrt{3}-\frac{\sqrt{1}}{\sqrt{5}}-\left(\sqrt{45}+\sqrt{48}\right)
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{5}}.
3\sqrt{3}-\frac{1}{\sqrt{5}}-\left(\sqrt{45}+\sqrt{48}\right)
Tātaitia te pūtakerua o 1 kia tae ki 1.
3\sqrt{3}-\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}-\left(\sqrt{45}+\sqrt{48}\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
3\sqrt{3}-\frac{\sqrt{5}}{5}-\left(\sqrt{45}+\sqrt{48}\right)
Ko te pūrua o \sqrt{5} ko 5.
\frac{5\times 3\sqrt{3}}{5}-\frac{\sqrt{5}}{5}-\left(\sqrt{45}+\sqrt{48}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3\sqrt{3} ki te \frac{5}{5}.
\frac{5\times 3\sqrt{3}-\sqrt{5}}{5}-\left(\sqrt{45}+\sqrt{48}\right)
Tā te mea he rite te tauraro o \frac{5\times 3\sqrt{3}}{5} me \frac{\sqrt{5}}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{15\sqrt{3}-\sqrt{5}}{5}-\left(\sqrt{45}+\sqrt{48}\right)
Mahia ngā whakarea i roto o 5\times 3\sqrt{3}-\sqrt{5}.
\frac{15\sqrt{3}-\sqrt{5}}{5}-\left(3\sqrt{5}+\sqrt{48}\right)
Tauwehea te 45=3^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 5} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{5}. Tuhia te pūtakerua o te 3^{2}.
\frac{15\sqrt{3}-\sqrt{5}}{5}-\left(3\sqrt{5}+4\sqrt{3}\right)
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{15\sqrt{3}-\sqrt{5}}{5}-\frac{5\left(3\sqrt{5}+4\sqrt{3}\right)}{5}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3\sqrt{5}+4\sqrt{3} ki te \frac{5}{5}.
\frac{15\sqrt{3}-\sqrt{5}-5\left(3\sqrt{5}+4\sqrt{3}\right)}{5}
Tā te mea he rite te tauraro o \frac{15\sqrt{3}-\sqrt{5}}{5} me \frac{5\left(3\sqrt{5}+4\sqrt{3}\right)}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{15\sqrt{3}-\sqrt{5}-15\sqrt{5}-20\sqrt{3}}{5}
Mahia ngā whakarea i roto o 15\sqrt{3}-\sqrt{5}-5\left(3\sqrt{5}+4\sqrt{3}\right).
\frac{-5\sqrt{3}-16\sqrt{5}}{5}
Mahia ngā tātaitai i roto o 15\sqrt{3}-\sqrt{5}-15\sqrt{5}-20\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}