Aromātai
\frac{7\sqrt{3}}{3}\approx 4.041451884
Tohaina
Kua tāruatia ki te papatopenga
3\sqrt{3}-\frac{2}{3}\sqrt{18}-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
3\sqrt{3}-\frac{2}{3}\times 3\sqrt{2}-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
3\sqrt{3}-2\sqrt{2}-\left(\sqrt{\frac{4}{3}}-4\sqrt{\frac{1}{2}}\right)
Me whakakore te 3 me te 3.
3\sqrt{3}-2\sqrt{2}-\left(\frac{\sqrt{4}}{\sqrt{3}}-4\sqrt{\frac{1}{2}}\right)
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{4}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{4}}{\sqrt{3}}.
3\sqrt{3}-2\sqrt{2}-\left(\frac{2}{\sqrt{3}}-4\sqrt{\frac{1}{2}}\right)
Tātaitia te pūtakerua o 4 kia tae ki 2.
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-4\sqrt{\frac{1}{2}}\right)
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}-4\sqrt{\frac{1}{2}}\right)
Ko te pūrua o \sqrt{3} ko 3.
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{1}}{\sqrt{2}}\right)
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{2}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{2}}.
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}-4\times \frac{1}{\sqrt{2}}\right)
Tātaitia te pūtakerua o 1 kia tae ki 1.
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}-4\times \frac{\sqrt{2}}{2}\right)
Ko te pūrua o \sqrt{2} ko 2.
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}-2\sqrt{2}\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
3\sqrt{3}-2\sqrt{2}-\left(\frac{2\sqrt{3}}{3}+\frac{3\left(-2\right)\sqrt{2}}{3}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -2\sqrt{2} ki te \frac{3}{3}.
3\sqrt{3}-2\sqrt{2}-\frac{2\sqrt{3}+3\left(-2\right)\sqrt{2}}{3}
Tā te mea he rite te tauraro o \frac{2\sqrt{3}}{3} me \frac{3\left(-2\right)\sqrt{2}}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
3\sqrt{3}-2\sqrt{2}-\frac{2\sqrt{3}-6\sqrt{2}}{3}
Mahia ngā whakarea i roto o 2\sqrt{3}+3\left(-2\right)\sqrt{2}.
\frac{3\left(3\sqrt{3}-2\sqrt{2}\right)}{3}-\frac{2\sqrt{3}-6\sqrt{2}}{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 3\sqrt{3}-2\sqrt{2} ki te \frac{3}{3}.
\frac{3\left(3\sqrt{3}-2\sqrt{2}\right)-\left(2\sqrt{3}-6\sqrt{2}\right)}{3}
Tā te mea he rite te tauraro o \frac{3\left(3\sqrt{3}-2\sqrt{2}\right)}{3} me \frac{2\sqrt{3}-6\sqrt{2}}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{9\sqrt{3}-6\sqrt{2}-2\sqrt{3}+6\sqrt{2}}{3}
Mahia ngā whakarea i roto o 3\left(3\sqrt{3}-2\sqrt{2}\right)-\left(2\sqrt{3}-6\sqrt{2}\right).
\frac{7\sqrt{3}}{3}
Mahia ngā tātaitai i roto o 9\sqrt{3}-6\sqrt{2}-2\sqrt{3}+6\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}