Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{2}x\right)^{2}-9=2x\left(x-3\right)
Whakaarohia te \left(\sqrt{2}x-3\right)\left(\sqrt{2}x+3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 3.
\left(\sqrt{2}\right)^{2}x^{2}-9=2x\left(x-3\right)
Whakarohaina te \left(\sqrt{2}x\right)^{2}.
2x^{2}-9=2x\left(x-3\right)
Ko te pūrua o \sqrt{2} ko 2.
2x^{2}-9=2x^{2}-6x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x ki te x-3.
2x^{2}-9-2x^{2}=-6x
Tangohia te 2x^{2} mai i ngā taha e rua.
-9=-6x
Pahekotia te 2x^{2} me -2x^{2}, ka 0.
-6x=-9
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-9}{-6}
Whakawehea ngā taha e rua ki te -6.
x=\frac{3}{2}
Whakahekea te hautanga \frac{-9}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -3.