Aromātai
6-2\sqrt{2}\approx 3.171572875
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{2}\right)^{2}-4\sqrt{2}+4+\frac{\sqrt{\frac{1\times 3+2}{3}}}{\sqrt{\frac{5}{24}}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{2}-2\right)^{2}.
2-4\sqrt{2}+4+\frac{\sqrt{\frac{1\times 3+2}{3}}}{\sqrt{\frac{5}{24}}}
Ko te pūrua o \sqrt{2} ko 2.
6-4\sqrt{2}+\frac{\sqrt{\frac{1\times 3+2}{3}}}{\sqrt{\frac{5}{24}}}
Tāpirihia te 2 ki te 4, ka 6.
6-4\sqrt{2}+\frac{\sqrt{\frac{3+2}{3}}}{\sqrt{\frac{5}{24}}}
Whakareatia te 1 ki te 3, ka 3.
6-4\sqrt{2}+\frac{\sqrt{\frac{5}{3}}}{\sqrt{\frac{5}{24}}}
Tāpirihia te 3 ki te 2, ka 5.
6-4\sqrt{2}+\frac{\frac{\sqrt{5}}{\sqrt{3}}}{\sqrt{\frac{5}{24}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{3}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{3}}.
6-4\sqrt{2}+\frac{\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{5}{24}}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
6-4\sqrt{2}+\frac{\frac{\sqrt{5}\sqrt{3}}{3}}{\sqrt{\frac{5}{24}}}
Ko te pūrua o \sqrt{3} ko 3.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\sqrt{\frac{5}{24}}}
Hei whakarea \sqrt{5} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}}{\sqrt{24}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{24}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{24}}.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}}{2\sqrt{6}}}
Tauwehea te 24=2^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 6} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{6}. Tuhia te pūtakerua o te 2^{2}.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}\sqrt{6}}{2\left(\sqrt{6}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{2\sqrt{6}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{5}\sqrt{6}}{2\times 6}}
Ko te pūrua o \sqrt{6} ko 6.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{30}}{2\times 6}}
Hei whakarea \sqrt{5} me \sqrt{6}, whakareatia ngā tau i raro i te pūtake rua.
6-4\sqrt{2}+\frac{\frac{\sqrt{15}}{3}}{\frac{\sqrt{30}}{12}}
Whakareatia te 2 ki te 6, ka 12.
6-4\sqrt{2}+\frac{\sqrt{15}\times 12}{3\sqrt{30}}
Whakawehe \frac{\sqrt{15}}{3} ki te \frac{\sqrt{30}}{12} mā te whakarea \frac{\sqrt{15}}{3} ki te tau huripoki o \frac{\sqrt{30}}{12}.
6-4\sqrt{2}+\frac{4\sqrt{15}}{\sqrt{30}}
Me whakakore tahi te 3 i te taurunga me te tauraro.
6-4\sqrt{2}+\frac{4\sqrt{15}\sqrt{30}}{\left(\sqrt{30}\right)^{2}}
Whakangāwaritia te tauraro o \frac{4\sqrt{15}}{\sqrt{30}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{30}.
6-4\sqrt{2}+\frac{4\sqrt{15}\sqrt{30}}{30}
Ko te pūrua o \sqrt{30} ko 30.
6-4\sqrt{2}+\frac{4\sqrt{15}\sqrt{15}\sqrt{2}}{30}
Tauwehea te 30=15\times 2. Tuhia anō te pūtake rua o te hua \sqrt{15\times 2} hei hua o ngā pūtake rua \sqrt{15}\sqrt{2}.
6-4\sqrt{2}+\frac{4\times 15\sqrt{2}}{30}
Whakareatia te \sqrt{15} ki te \sqrt{15}, ka 15.
6-4\sqrt{2}+\frac{60\sqrt{2}}{30}
Whakareatia te 4 ki te 15, ka 60.
6-4\sqrt{2}+2\sqrt{2}
Whakawehea te 60\sqrt{2} ki te 30, kia riro ko 2\sqrt{2}.
6-2\sqrt{2}
Pahekotia te -4\sqrt{2} me 2\sqrt{2}, ka -2\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}