Aromātai
4\sqrt{10}+22\approx 34.649110641
Whakaroha
4 \sqrt{10} + 22 = 34.649110641
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{2}\right)^{2}+4\sqrt{2}\sqrt{5}+4\left(\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{2}+2\sqrt{5}\right)^{2}.
2+4\sqrt{2}\sqrt{5}+4\left(\sqrt{5}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
2+4\sqrt{10}+4\left(\sqrt{5}\right)^{2}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
2+4\sqrt{10}+4\times 5
Ko te pūrua o \sqrt{5} ko 5.
2+4\sqrt{10}+20
Whakareatia te 4 ki te 5, ka 20.
22+4\sqrt{10}
Tāpirihia te 2 ki te 20, ka 22.
\left(\sqrt{2}\right)^{2}+4\sqrt{2}\sqrt{5}+4\left(\sqrt{5}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{2}+2\sqrt{5}\right)^{2}.
2+4\sqrt{2}\sqrt{5}+4\left(\sqrt{5}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
2+4\sqrt{10}+4\left(\sqrt{5}\right)^{2}
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
2+4\sqrt{10}+4\times 5
Ko te pūrua o \sqrt{5} ko 5.
2+4\sqrt{10}+20
Whakareatia te 4 ki te 5, ka 20.
22+4\sqrt{10}
Tāpirihia te 2 ki te 20, ka 22.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}