Aromātai
\sqrt{10}\approx 3.16227766
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{2}+\sqrt{5}\right)^{2}.
2+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Ko te pūrua o \sqrt{2} ko 2.
2+2\sqrt{10}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Hei whakarea \sqrt{2} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
2+2\sqrt{10}+5-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Ko te pūrua o \sqrt{5} ko 5.
7+2\sqrt{10}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Tāpirihia te 2 ki te 5, ka 7.
7+2\sqrt{10}-\left(4+4\sqrt{10}+\left(\sqrt{10}\right)^{2}\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{10}\right)^{2}.
7+2\sqrt{10}-\left(4+4\sqrt{10}+10\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Ko te pūrua o \sqrt{10} ko 10.
7+2\sqrt{10}-\left(14+4\sqrt{10}\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Tāpirihia te 4 ki te 10, ka 14.
7+2\sqrt{10}-14-4\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Hei kimi i te tauaro o 14+4\sqrt{10}, kimihia te tauaro o ia taurangi.
-7+2\sqrt{10}-4\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Tangohia te 14 i te 7, ka -7.
-7-2\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Pahekotia te 2\sqrt{10} me -4\sqrt{10}, ka -2\sqrt{10}.
-7-2\sqrt{10}+3\sqrt{10}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Tauwehea te 90=3^{2}\times 10. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 10} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{10}. Tuhia te pūtakerua o te 3^{2}.
-7+\sqrt{10}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Pahekotia te -2\sqrt{10} me 3\sqrt{10}, ka \sqrt{10}.
-7+\sqrt{10}+\left(2\sqrt{2}\right)^{2}-1
Whakaarohia te \left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
-7+\sqrt{10}+2^{2}\left(\sqrt{2}\right)^{2}-1
Whakarohaina te \left(2\sqrt{2}\right)^{2}.
-7+\sqrt{10}+4\left(\sqrt{2}\right)^{2}-1
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
-7+\sqrt{10}+4\times 2-1
Ko te pūrua o \sqrt{2} ko 2.
-7+\sqrt{10}+8-1
Whakareatia te 4 ki te 2, ka 8.
-7+\sqrt{10}+7
Tangohia te 1 i te 8, ka 7.
\sqrt{10}
Tāpirihia te -7 ki te 7, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}