Aromātai
2\sqrt{6}+1\approx 5.898979486
Tohaina
Kua tāruatia ki te papatopenga
\left(3\sqrt{2}+\sqrt{12}\right)\left(3\sqrt{2}-2\sqrt{3}\right)-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Whakaarohia te \left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Whakarohaina te \left(3\sqrt{2}\right)^{2}.
9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9\times 2-\left(2\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
18-\left(2\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Whakareatia te 9 ki te 2, ka 18.
18-2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
18-4\left(\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
18-4\times 3-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
18-12-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
6-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Tangohia te 12 i te 18, ka 6.
6-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{3}-\sqrt{2}\right)^{2}.
6-\left(3-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Ko te pūrua o \sqrt{3} ko 3.
6-\left(3-2\sqrt{6}+\left(\sqrt{2}\right)^{2}\right)
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
6-\left(3-2\sqrt{6}+2\right)
Ko te pūrua o \sqrt{2} ko 2.
6-\left(5-2\sqrt{6}\right)
Tāpirihia te 3 ki te 2, ka 5.
6-5+2\sqrt{6}
Hei kimi i te tauaro o 5-2\sqrt{6}, kimihia te tauaro o ia taurangi.
1+2\sqrt{6}
Tangohia te 5 i te 6, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}