Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(3\sqrt{2}+\sqrt{12}\right)\left(3\sqrt{2}-2\sqrt{3}\right)-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right)-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Whakaarohia te \left(3\sqrt{2}+2\sqrt{3}\right)\left(3\sqrt{2}-2\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Whakarohaina te \left(3\sqrt{2}\right)^{2}.
9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
9\times 2-\left(2\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Ko te pūrua o \sqrt{2} ko 2.
18-\left(2\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Whakareatia te 9 ki te 2, ka 18.
18-2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Whakarohaina te \left(2\sqrt{3}\right)^{2}.
18-4\left(\sqrt{3}\right)^{2}-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
18-4\times 3-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Ko te pūrua o \sqrt{3} ko 3.
18-12-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Whakareatia te 4 ki te 3, ka 12.
6-\left(\sqrt{3}-\sqrt{2}\right)^{2}
Tangohia te 12 i te 18, ka 6.
6-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{3}-\sqrt{2}\right)^{2}.
6-\left(3-2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Ko te pūrua o \sqrt{3} ko 3.
6-\left(3-2\sqrt{6}+\left(\sqrt{2}\right)^{2}\right)
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
6-\left(3-2\sqrt{6}+2\right)
Ko te pūrua o \sqrt{2} ko 2.
6-\left(5-2\sqrt{6}\right)
Tāpirihia te 3 ki te 2, ka 5.
6-5+2\sqrt{6}
Hei kimi i te tauaro o 5-2\sqrt{6}, kimihia te tauaro o ia taurangi.
1+2\sqrt{6}
Tangohia te 5 i te 6, ka 1.