Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\sqrt{10}\right)^{2}-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{10}-\sqrt{2}\right)^{2}.
10-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Ko te pūrua o \sqrt{10} ko 10.
10-2\sqrt{2}\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Tauwehea te 10=2\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2\times 5} hei hua o ngā pūtake rua \sqrt{2}\sqrt{5}.
10-2\times 2\sqrt{5}+\left(\sqrt{2}\right)^{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
10-4\sqrt{5}+\left(\sqrt{2}\right)^{2}
Whakareatia te -2 ki te 2, ka -4.
10-4\sqrt{5}+2
Ko te pūrua o \sqrt{2} ko 2.
12-4\sqrt{5}
Tāpirihia te 10 ki te 2, ka 12.
\left(\sqrt{10}\right)^{2}-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{10}-\sqrt{2}\right)^{2}.
10-2\sqrt{10}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Ko te pūrua o \sqrt{10} ko 10.
10-2\sqrt{2}\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^{2}
Tauwehea te 10=2\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2\times 5} hei hua o ngā pūtake rua \sqrt{2}\sqrt{5}.
10-2\times 2\sqrt{5}+\left(\sqrt{2}\right)^{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
10-4\sqrt{5}+\left(\sqrt{2}\right)^{2}
Whakareatia te -2 ki te 2, ka -4.
10-4\sqrt{5}+2
Ko te pūrua o \sqrt{2} ko 2.
12-4\sqrt{5}
Tāpirihia te 10 ki te 2, ka 12.