Aromātai
-\frac{19}{75}\approx -0.253333333
Tauwehe
-\frac{19}{75} = -0.25333333333333335
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{1-0}+0\times 3^{2}-\frac{6}{25}}{-3}
Whakareatia te 0 ki te 19, ka 0.
\frac{\sqrt{1}+0\times 3^{2}-\frac{6}{25}}{-3}
Tangohia te 0 i te 1, ka 1.
\frac{1+0\times 3^{2}-\frac{6}{25}}{-3}
Tātaitia te pūtakerua o 1 kia tae ki 1.
\frac{1+0\times 9-\frac{6}{25}}{-3}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{1+0-\frac{6}{25}}{-3}
Whakareatia te 0 ki te 9, ka 0.
\frac{1-\frac{6}{25}}{-3}
Tāpirihia te 1 ki te 0, ka 1.
\frac{\frac{25}{25}-\frac{6}{25}}{-3}
Me tahuri te 1 ki te hautau \frac{25}{25}.
\frac{\frac{25-6}{25}}{-3}
Tā te mea he rite te tauraro o \frac{25}{25} me \frac{6}{25}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{19}{25}}{-3}
Tangohia te 6 i te 25, ka 19.
\frac{19}{25\left(-3\right)}
Tuhia te \frac{\frac{19}{25}}{-3} hei hautanga kotahi.
\frac{19}{-75}
Whakareatia te 25 ki te -3, ka -75.
-\frac{19}{75}
Ka taea te hautanga \frac{19}{-75} te tuhi anō ko -\frac{19}{75} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}