Aromātai
-2.25
Tauwehe
-2.25
Tohaina
Kua tāruatia ki te papatopenga
\left(\sqrt{0.81}+0.3^{2}-\frac{6}{25}\right)\left(-3\right)
Tangohia te 0.19 i te 1, ka 0.81.
\left(0.9+0.3^{2}-\frac{6}{25}\right)\left(-3\right)
Tātaitia te pūtakerua o 0.81 kia tae ki 0.9.
\left(0.9+0.09-\frac{6}{25}\right)\left(-3\right)
Tātaihia te 0.3 mā te pū o 2, kia riro ko 0.09.
\left(0.99-\frac{6}{25}\right)\left(-3\right)
Tāpirihia te 0.9 ki te 0.09, ka 0.99.
\left(\frac{99}{100}-\frac{6}{25}\right)\left(-3\right)
Me tahuri ki tau ā-ira 0.99 ki te hautau \frac{99}{100}.
\left(\frac{99}{100}-\frac{24}{100}\right)\left(-3\right)
Ko te maha noa iti rawa atu o 100 me 25 ko 100. Me tahuri \frac{99}{100} me \frac{6}{25} ki te hautau me te tautūnga 100.
\frac{99-24}{100}\left(-3\right)
Tā te mea he rite te tauraro o \frac{99}{100} me \frac{24}{100}, me tango rāua mā te tango i ō raua taurunga.
\frac{75}{100}\left(-3\right)
Tangohia te 24 i te 99, ka 75.
\frac{3}{4}\left(-3\right)
Whakahekea te hautanga \frac{75}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{3\left(-3\right)}{4}
Tuhia te \frac{3}{4}\left(-3\right) hei hautanga kotahi.
\frac{-9}{4}
Whakareatia te 3 ki te -3, ka -9.
-\frac{9}{4}
Ka taea te hautanga \frac{-9}{4} te tuhi anō ko -\frac{9}{4} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}